Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 113: 103629, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34015497

RESUMEN

Cognitive comorbidities often follow early-life seizures (ELS), especially in the setting of autism and other neurodevelopmental syndromes. However, there is an incomplete understanding of whether neuronal and synaptic development are concomitantly dysregulated. We have previously shown that hypoxia-induced seizures (HS) in postnatal day (P)10 rats increase acute and later-life hippocampal glutamatergic neurotransmission and spontaneous recurrent seizures, and impair cognition and behavior. As dendritic spines critically regulate synaptic function, we hypothesized that ELS can induce developmentally specific changes in dendritic spine maturation. At intervals during one month following HS in P10 rats, we assessed dendritic spine development on pyramidal neurons in the stratum radiatum of hippocampal area CA1. Compared to control rats in which spine density significantly decreased from P10 to early adulthood (P38), post-seizure rats failed to show a developmental decrease in spine density, and spines from P38 post-seizure rats appeared more immature-shaped (long, thin). In addition, compared to P38 control rats, post-seizure P38 rats expressed significantly more synaptic PSD-95, a marker of mature synapses. These changes were preceded by a transient increase in hippocampal expression of cofilin phosphorylated at Ser3, representing a decrease in cofilin activity. These results suggest that early-life seizures may impair normal dendritic spine maturation and pruning in CA1 during development, resulting in an excess of less efficient synapses, via activity-dependent modification of actin-regulating proteins such as cofilin. Given that multiple neurodevelopmental disorders show similar failures in developmental spine pruning, the current findings may represent a deficit in structural plasticity that could be a component of a mechanism leading to later-life cognitive consequences associated with early-life seizures.


Asunto(s)
Región CA1 Hipocampal/patología , Espinas Dendríticas/patología , Hipoxia Encefálica/complicaciones , Convulsiones/patología , Factores Despolimerizantes de la Actina/metabolismo , Animales , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Espinas Dendríticas/metabolismo , Masculino , Ratas , Ratas Long-Evans , Convulsiones/etiología , Convulsiones/metabolismo
2.
Cell Rep ; 23(9): 2533-2540, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29847785

RESUMEN

Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP) for tonotopic map plasticity in primary auditory cortex (A1). We show that this CP is characterized by a prevalence of "silent," NMDA-receptor (NMDAR)-only, glutamate receptor synapses in auditory cortex that become "unsilenced" due to activity-dependent AMPA receptor (AMPAR) insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity.


Asunto(s)
Percepción Auditiva/fisiología , Corteza Cerebral/fisiopatología , Plasticidad Neuronal/fisiología , Convulsiones/fisiopatología , Sinapsis/fisiología , Tálamo/fisiopatología , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Quinoxalinas/farmacología , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo
3.
Neurobiol Dis ; 116: 120-130, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738885

RESUMEN

Neonatal seizures disrupt normal synaptic maturation and often lead to later-life epilepsy and cognitive deficits. During early life, the brain exhibits heightened synaptic plasticity, in part due to a developmental overabundance of CaV1.2 L-type voltage gated calcium (Ca2+) channels (LT-VGCCs) and Ca2+-permeable AMPARs (CP-AMPARs) lacking GluA2 subunits. We hypothesized that early-life seizures overactivate these channels, in turn dysregulating Ca2+-dependent signaling pathways including that of methyl CPG binding protein 2 (MeCP2), a transcription factor implicated in the autism spectrum disorder (ASD) Rett Syndrome. Here, we show that in vivo hypoxia-induced seizures (HS) in postnatal day (P)10 rats acutely induced phosphorylation of the neuronal-specific target of activity-dependent MeCP2 phosphorylation, S421, as well as its upstream activator CaMKII T286. We next identified mechanisms by which activity-dependent Ca2+ influx induced MeCP2 phosphorylation using in vitro cortical and hippocampal neuronal cultures at embryonic day (E)18 + 10 days in vitro (DIV). In contrast to the prevalent role of NMDARs in the adult brain, we found that both CP-AMPARs and LT-VGCCs mediated MeCP2 S421 and CaMKII T286 phosphorylation induced by kainic acid (KA) or high potassium chloride (KCl) stimulation. Furthermore, in vivo post-seizure treatment with the broad-spectrum AMPAR antagonist NBQX, the CP-AMPAR blocker IEM-1460, or the LT-VGCC antagonist nimodipine blocked seizure-induced MeCP2 phosphorylation. Collectively, these results demonstrate that early-life seizures dysregulate critical activity-dependent developmental signaling pathways, in part via CP-AMPAR and LT-VGCC activation, providing novel age-specific therapeutic targets for convergent pathways underlying epilepsy and ASDs.


Asunto(s)
Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Convulsiones/metabolismo , Serina/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/crecimiento & desarrollo , Hipocampo/crecimiento & desarrollo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Fosforilación/fisiología , Ratas , Convulsiones/genética , Serina/genética
4.
Mol Cell Neurosci ; 76: 11-20, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27521497

RESUMEN

Calcium (Ca2+)-mediated4 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is particularly high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48h after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and that this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48h after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target.


Asunto(s)
Señalización del Calcio , Potenciación a Largo Plazo , Receptores AMPA/metabolismo , Convulsiones/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Masculino , Ratas , Ratas Long-Evans , Receptores AMPA/agonistas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/genética , Sinapsis/fisiología
5.
Epilepsia ; 54(11): 1922-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24117347

RESUMEN

PURPOSE: To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits. METHODS: Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses). Twelve hours post-HS, we assessed mTOR activation marker phosphorylated p70-S6 kinase (p-p70S6K) in hippocampus and cortex of vehicle (HS + V) or NBQX-treated post-HS rats (HS + N) versus littermate controls (C + V). Spontaneous seizure activity was compared between groups by epidural cortical electroencephalography (EEG) at P70-100. Aberrant mossy fiber sprouting was measured using Timm staining. Finally, we assessed behavior between P30 and P38. KEY FINDINGS: Postseizure NBQX treatment significantly attenuated seizure-induced increases in p-p70S6K in the hippocampus (p < 0.01) and cortex (p < 0.001). Although spontaneous recurrent seizures increased in adulthood in HS + V rats compared to controls (3.22 ± 1 seizures/h; p = 0.03), NBQX significantly attenuated later-life seizures (0.14 ± 0.1 seizures/h; p = 0.046). HS + N rats showed less aberrant mossy fiber sprouting (115 ± 8.0%) than vehicle-treated post-HS rats (174 ± 10%, p = 0.004), compared to controls (normalized to 100%). Finally, NBQX treatment prevented alterations in later-life social behavior; post-HS rats showed significantly decreased preference for a novel over a familiar rat (71.0 ± 12 s) compared to controls (99.0 ± 15.6 s; p < 0.01), whereas HS + N rats showed social novelty preference similar to controls (114.3 ± 14.1 s). SIGNIFICANCE: Brief NBQX administration during the 48 h postseizure in P10 Long-Evans rats suppresses transient mTOR pathway activation and attenuates spontaneous recurrent seizures, social preference deficits, and mossy fiber sprouting observed in vehicle-treated adult rats after early life seizures. These results suggest that acute AMPAR antagonist treatment during the latent period immediately following neonatal HS can modify seizure-induced activation of mTOR, reduce the frequency of later-life seizures, and protect against CA3 mossy fiber sprouting and autistic-like social deficits.


Asunto(s)
Neuronas/metabolismo , Quinoxalinas/farmacología , Receptores AMPA/antagonistas & inhibidores , Convulsiones/tratamiento farmacológico , Envejecimiento , Animales , Animales Recién Nacidos , Trastorno Autístico/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratas , Ratas Long-Evans , Receptores AMPA/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo
6.
Neuron Glia Biol ; 6(3): 193-200, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21044397

RESUMEN

In the cerebellum, lamellar Bergmann glial (BG) appendages wrap tightly around almost every Purkinje cell dendritic spine. The function of this glial ensheathment of spines is not entirely understood. The development of ensheathment begins near the onset of synaptogenesis, when motility of both BG processes and dendritic spines are high. By the end of the synaptogenic period, ensheathment is complete and motility of the BG processes decreases, correlating with the decreased motility of dendritic spines. We therefore have hypothesized that ensheathment is intimately involved in capping synaptogenesis, possibly by stabilizing synapses. To test this hypothesis, we misexpressed GluR2 in an adenoviral vector in BG towards the end of the synaptogenic period, rendering the BG α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) Ca2+-impermeable and causing glial sheath retraction. We then measured the resulting spine motility, spine density and synapse number. Although we found that decreasing ensheathment at this time does not alter spine motility, we did find a significant increase in both synaptic pucta and dendritic spine density. These results indicate that consistent spine coverage by BG in the cerebellum is not necessary for stabilization of spine dynamics, but is very important in the regulation of synapse number.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Espinas Dendríticas/ultraestructura , Neurogénesis/fisiología , Neuroglía/ultraestructura , Sinapsis/ultraestructura , Animales , Cerebelo/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...