Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Environ Sci Technol ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626664

RESUMEN

Examining in situ processes in the soil rhizosphere requires spatial information on physical and chemical properties under undisturbed conditions. We developed a correlative imaging workflow for targeted sampling of roots in their three-dimensional (3D) context and assessed the imprint of roots on chemical properties of the root-soil contact zone at micrometer to millimeter scale. Maize (Zea mays) was grown in 15N-labeled soil columns and pulse-labeled with 13CO2 to visualize the spatial distribution of carbon inputs and nitrogen uptake together with the redistribution of other elements. Soil columns were scanned by X-ray computed tomography (X-ray CT) at low resolution (45 µm) to enable image-guided subsampling of specific root segments. Resin-embedded subsamples were then analyzed by X-ray CT at high resolution (10 µm) for their 3D structure and chemical gradients around roots using micro-X-ray fluorescence spectroscopy (µXRF), nanoscale secondary ion mass spectrometry (NanoSIMS), and laser-ablation isotope ratio mass spectrometry (LA-IRMS). Concentration gradients, particularly of calcium and sulfur, with different spatial extents could be identified by µXRF. NanoSIMS and LA-IRMS detected the release of 13C into soil up to a distance of 100 µm from the root surface, whereas 15N accumulated preferentially in the root cells. We conclude that combining targeted sampling of the soil-root system and correlative microscopy opens new avenues for unraveling rhizosphere processes in situ.

3.
Plants (Basel) ; 11(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365336

RESUMEN

Understanding the biological roles of root hairs is key to projecting their contributions to plant growth and to assess their relevance for plant breeding. The objective of this study was to assess the importance of root hairs for maize nutrition, carbon allocation and root gene expression in a field experiment. Applying wild type and root hairless rth3 maize grown on loam and sand, we examined the period of growth including 4-leaf, 9-leaf and tassel emergence stages, accompanied with a low precipitation rate. rth3 maize had lower shoot growth and lower total amounts of mineral nutrients than wild type, but the concentrations of mineral elements, root gene expression, or carbon allocation were largely unchanged. For these parameters, growth stage accounted for the main differences, followed by substrate. Substrate-related changes were pronounced during tassel emergence, where the concentrations of several elements in leaves as well as cell wall formation-related root gene expression and C allocation decreased. In conclusion, the presence of root hairs stimulated maize shoot growth and total nutrient uptake, but other parameters were more impacted by growth stage and soil texture. Further research should relate root hair functioning to the observed losses in maize productivity and growth efficiency.

4.
Front Plant Sci ; 12: 753812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925405

RESUMEN

The interplay of rhizosphere components such as root exudates, microbes, and minerals results in small-scale gradients of organic molecules in the soil around roots. The current methods for the direct chemical imaging of plant metabolites in the rhizosphere often lack molecular information or require labeling with fluorescent tags or isotopes. Here, we present a novel workflow using laser desorption ionization (LDI) combined with mass spectrometric imaging (MSI) to directly analyze plant metabolites in a complex soil matrix. Undisturbed samples of the roots and the surrounding soil of Zea mays L. plants from either field- or laboratory-scale experiments were embedded and cryosectioned to 100 µm thin sections. The target metabolites were detected with a spatial resolution of 25 µm in the root and the surrounding soil based on accurate masses using ultra-high mass resolution laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry (LDI-FT-ICR-MS). Using this workflow, we could determine the rhizosphere gradients of a dihexose (e.g., sucrose) and other plant metabolites (e.g., coumaric acid, vanillic acid). The molecular gradients for the dihexose showed a high abundance of this metabolite in the root and a strong depletion of the signal intensity within 150 µm from the root surface. Analyzing several sections from the same undisturbed soil sample allowed us to follow molecular gradients along the root axis. Benefiting from the ultra-high mass resolution, isotopologues of the dihexose could be readily resolved to enable the detection of stable isotope labels on the compound level. Overall, the direct molecular imaging via LDI-FT-ICR-MS allows for the first time a non-targeted or targeted analysis of plant metabolites in undisturbed soil samples, paving the way to study the turnover of root-derived organic carbon in the rhizosphere with high chemical and spatial resolution.

5.
Plant Methods ; 17(1): 39, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832482

RESUMEN

BACKGROUND: X-ray computed tomography is acknowledged as a powerful tool for the study of root system architecture of plants growing in soil. In this paper, we improved the original root segmentation algorithm "Rootine" and present its succeeding version "Rootine v.2". In addition to gray value information, Rootine algorithms are based on shape detection of cylindrical roots. Both algorithms are macros for the ImageJ software and are made freely available to the public. New features in Rootine v.2 are (i) a pot wall detection and removal step to avoid segmentation artefacts for roots growing along the pot wall, (ii) a calculation of the root average gray value based on a histogram analysis, (iii) an automatic calculation of thresholds for hysteresis thresholding of the tubeness image to reduce the number of parameters and (iv) a false negatives recovery based on shape criteria to increase root recovery. We compare the segmentation results of Rootine v.1 and Rootine v.2 with the results of root washing and subsequent analysis with WinRhizo. We use a benchmark dataset of maize roots (Zea mays L. cv. B73) grown in repacked soil for two scenarios with differing soil heterogeneity and image quality. RESULTS: We demonstrate that Rootine v.2 outperforms its preceding version in terms of root recovery and enables to match better the root diameter distribution data obtained with root washing. Despite a longer processing time, Rootine v.2 comprises less user-defined parameters and shows an overall greater usability. CONCLUSION: The proposed method facilitates higher root detection accuracy than its predecessor and has the potential for improving high-throughput root phenotyping procedures based on X-ray computed tomography data analysis.

6.
J Exp Bot ; 71(18): 5603-5614, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32463450

RESUMEN

Non-invasive X-ray computed tomography (XRCT) is increasingly used in rhizosphere research to visualize development of soil-root interfaces in situ. However, exposing living systems to X-rays can potentially impact their processes and metabolites. In order to evaluate these effects, we assessed the responses of rhizosphere processes 1 and 24 h after a low X-ray exposure (0.81 Gy). Changes in root gene expression patterns occurred 1 h after exposure with down-regulation of cell wall-, lipid metabolism-, and cell stress-related genes, but no differences remained after 24 h. At either time point, XRCT did not affect either root antioxidative enzyme activities or the composition of the rhizosphere bacterial microbiome and microbial growth parameters. The potential activities of leucine aminopeptidase and phosphomonoesterase were lower at 1 h, but did not differ from the control 24 h after exposure. A time delay of 24 h after a low X-ray exposure (0.81 Gy) was sufficient to reverse any effects on the observed rhizosphere systems. Our data suggest that before implementing novel experimental designs involving XRCT, a study on its impact on the investigated processes should be conducted.


Asunto(s)
Rizosfera , Microbiología del Suelo , Expresión Génica , Raíces de Plantas , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...