Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7: 44585, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327635

RESUMEN

Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0-2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths.


Asunto(s)
Distribución Animal , Evolución Biológica , ADN Mitocondrial/genética , Genoma Mitocondrial , Mamuts/genética , Filogenia , Animales , Asia , Europa (Continente) , Extinción Biológica , Femenino , Fósiles , Flujo Génico , Masculino , Mamuts/clasificación , América del Norte , Filogeografía , Análisis de Secuencia de ADN
2.
Hum Genet ; 135(5): 541-553, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27043341

RESUMEN

The recent availability of large-scale sequence data for the human Y chromosome has revolutionized analyses of and insights gained from this non-recombining, paternally inherited chromosome. However, the studies to date focus on Eurasian variation, and hence the diversity of early-diverging branches found in Africa has not been adequately documented. Here, we analyze over 900 kb of Y chromosome sequence obtained from 547 individuals from southern African Khoisan- and Bantu-speaking populations, identifying 232 new sequences from basal haplogroups A and B. We identify new clades in the phylogeny, an older age for the root, and substantially older ages for some individual haplogroups. Furthermore, while haplogroup B2a is traditionally associated with the spread of Bantu speakers, we find that it probably also existed in Khoisan groups before the arrival of Bantu speakers. Finally, there is pronounced variation in branch length between major haplogroups; in particular, haplogroups associated with Bantu speakers have significantly longer branches. Technical artifacts cannot explain this branch length variation, which instead likely reflects aspects of the demographic history of Bantu speakers, such as recent population expansion and an older average paternal age. The influence of demographic factors on branch length variation has broader implications both for the human Y phylogeny and for similar analyses of other species.


Asunto(s)
Población Negra/genética , Cromosomas Humanos Y/genética , Variación Genética/genética , Genética de Población , Haplotipos/genética , África , Humanos , Filogenia
3.
PLoS One ; 10(5): e0125444, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961286

RESUMEN

Humans living at high altitude (≥ 2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1) was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and associated pathways that may be involved in high-altitude adaptation in Andean populations.


Asunto(s)
Adaptación Fisiológica/genética , Altitud , Sitios Genéticos , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Cromosomas Humanos Par 10/genética , Femenino , Frecuencia de los Genes , Genoma , Haplotipos , Homocigoto , Humanos , Masculino , Proteína D Asociada a Surfactante Pulmonar/genética
4.
Investig Genet ; 5: 13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25254093

RESUMEN

BACKGROUND: Comparisons of maternally-inherited mitochondrial DNA (mtDNA) and paternally-inherited non-recombining Y chromosome (NRY) variation have provided important insights into the impact of sex-biased processes (such as migration, residence pattern, and so on) on human genetic variation. However, such comparisons have been limited by the different molecular methods typically used to assay mtDNA and NRY variation (for example, sequencing hypervariable segments of the control region for mtDNA vs. genotyping SNPs and/or STR loci for the NRY). Here, we report a simple capture array method to enrich Illumina sequencing libraries for approximately 500 kb of NRY sequence, which we use to generate NRY sequences from 623 males from 51 populations in the CEPH Human Genome Diversity Panel (HGDP). We also obtained complete mtDNA genome sequences from the same individuals, allowing us to compare maternal and paternal histories free of any ascertainment bias. RESULTS: We identified 2,228 SNPs in the NRY sequences and 2,163 SNPs in the mtDNA sequences. Our results confirm the controversial assertion that genetic differences between human populations on a global scale are bigger for the NRY than for mtDNA, although the differences are not as large as previously suggested. More importantly, we find substantial regional variation in patterns of mtDNA versus NRY variation. Model-based simulations indicate very small ancestral effective population sizes (<100) for the out-of-Africa migration as well as for many human populations. We also find that the ratio of female effective population size to male effective population size (Nf/Nm) has been greater than one throughout the history of modern humans, and has recently increased due to faster growth in Nf than Nm. CONCLUSIONS: The NRY and mtDNA sequences provide new insights into the paternal and maternal histories of human populations, and the methods we introduce here should be widely applicable for further such studies.

5.
PLoS One ; 8(5): e64985, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23741439

RESUMEN

Several studies based on a variety of genetic markers have attempted to establish the origins of horse domestication. Thus far a discrepancy between the results of mitochondrial DNA analysis, which show high levels of diversity, and results from the Y-chromosome, with almost no genetic variability, has been identified. Most previous work on the horse Y-chromosome has focused on widespread, popular breeds or local Asian breeds. It is possible that these breeds represent a reduced set of the genetic variation present in the species. Additional genetic variation may be present in local breeds and ancient feral populations, such as the Retuertas horse in Spain. In this study we analyzed the Y-chromosome of the Retuertas horse, a feral horse population on the Iberian Peninsula that is at least several hundred years old, and whose genetic diversity and morphology suggests that it has been reproductively isolated for a long time. Data from the Retuertas horse was compared to another 11 breeds from the region (Portugal, Spain and France) or likely of Iberian origin, and then to data from 15 more breeds from around the globe. We sequenced 31 introns, Zinc finger Y-chromosomal protein (ZFY) and anonymous Y-linked fragments and genotyped 6 microsatellite loci found on the Y-chromosome. We found no sequence variation among all individuals and all breeds studied. However, fifteen differences were discovered between our data set and reference sequences in GenBank. We show that these likely represent errors within the deposited sequences, and suggest that they should not be used as comparative data for future projects.


Asunto(s)
Caballos/genética , Cromosoma Y , Animales , Europa (Continente) , Femenino , Sitios Genéticos , Genotipo , Masculino , Repeticiones de Microsatélite
6.
BMC Evol Biol ; 11: 328, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22082251

RESUMEN

BACKGROUND: DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets. RESULTS: In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago. CONCLUSIONS: Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the domestic horse mtDNA gene pool.


Asunto(s)
Animales Salvajes/genética , Genoma Mitocondrial , Caballos/genética , Animales , Teorema de Bayes , Evolución Biológica , ADN Mitocondrial/genética , Femenino , Mitocondrias/genética , Filogenia
7.
Nat Commun ; 2: 450, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21863017

RESUMEN

Modern domestic horses display abundant genetic diversity within female-inherited mitochondrial DNA, but practically no sequence diversity on the male-inherited Y chromosome. Several hypotheses have been proposed to explain this discrepancy, but can only be tested through knowledge of the diversity in both the ancestral (pre-domestication) maternal and paternal lineages. As wild horses are practically extinct, ancient DNA studies offer the only means to assess this ancestral diversity. Here we show considerable ancestral diversity in ancient male horses by sequencing 4 kb of Y chromosomal DNA from eight ancient wild horses and one 2,800-year-old domesticated horse. Both ancient and modern domestic horses form a separate branch from the ancient wild horses, with the Przewalski horse at its base. Our methodology establishes the feasibility of re-sequencing long ancient nuclear DNA fragments and demonstrates the power of ancient Y chromosome DNA sequence data to provide insights into the evolutionary history of populations.


Asunto(s)
Variación Genética , Caballos/clasificación , Caballos/genética , Cromosoma Y/genética , Animales , ADN Mitocondrial/genética , Evolución Molecular , Femenino , Masculino , Datos de Secuencia Molecular , Filogenia
8.
Science ; 324(5926): 485, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19390039

RESUMEN

The transformation of wild animals into domestic ones available for human nutrition was a key prerequisite for modern human societies. However, no other domestic species has had such a substantial impact on the warfare, transportation, and communication capabilities of human societies as the horse. Here, we show that the analysis of ancient DNA targeting nuclear genes responsible for coat coloration allows us to shed light on the timing and place of horse domestication. We conclude that it is unlikely that horse domestication substantially predates the occurrence of coat color variation, which was found to begin around the third millennium before the common era.


Asunto(s)
Crianza de Animales Domésticos/historia , Color del Cabello/genética , Caballos/genética , Animales , Evolución Biológica , Cruzamiento , ADN , Europa (Continente) , Variación Genética , Historia Antigua , Siberia
9.
BMC Evol Biol ; 8: 221, 2008 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-18664258

RESUMEN

BACKGROUND: A Baltic population of Atlantic sturgeon was founded approximately 1,200 years ago by migrants from North America, but after centuries of persistence, the population was extirpated in the 1960s, mainly as a result of over-harvest and habitat alterations. As there are four genetically distinct groups of Atlantic sturgeon inhabiting North American rivers today, we investigated the genetic provenance of the historic Baltic population by ancient DNA analyses using mitochondrial and nuclear markers. RESULTS: The phylogeographic signal obtained from multilocus microsatellite DNA genotypes and mitochondrial DNA control region haplotypes, when compared to existing baseline datasets from extant populations, allowed for the identification of the region-of-origin of the North American Atlantic sturgeon founders. Moreover, statistical and simulation analyses of the multilocus genotypes allowed for the calculation of the effective number of individuals that originally founded the European population of Atlantic sturgeon. Our findings suggest that the Baltic population of A. oxyrinchus descended from a relatively small number of founders originating from the northern extent of the species' range in North America. CONCLUSION: These results demonstrate that the most northerly distributed North American A. oxyrinchus colonized the Baltic Sea approximately 1,200 years ago, suggesting that Canadian specimens should be the primary source of broodstock used for restoration in Baltic rivers. This study illustrates the great potential of patterns obtained from ancient DNA to identify population-of-origin to investigate historic genotype structure of extinct populations.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Peces/genética , Genética de Población , Repeticiones de Microsatélite , Animales , Océano Atlántico , Secuencia de Bases , Quimera/genética , Europa (Continente) , Haplotipos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...