Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686418

RESUMEN

This study aims to highlight the impact of physicochemical properties on the behaviour of nanopharmaceuticals and how much carrier structure and physiochemical characteristics weigh on the effects of a formulation. For this purpose, two commercially available nanosimilar formulations of Doxil and their respective carriers were compared as a case study. Although the two formulations were "similar", we detected different toxicological effects (profiles) in terms of in vitro toxicity and immunological responses at the level of cytokines release and complement activation (iC3b fragment), that could be correlated with the differences in the physicochemical properties of the formulations. Shedding light on nanosimilar key quality attributes of liposome-based materials and the need for an accurate characterization, including investigation of the immunological effects, is of fundamental importance considering their great potential as delivery system for drugs, genes, or vaccines and the growing market demand.


Asunto(s)
Doxorrubicina , Polietilenglicoles , Doxorrubicina/farmacología , Excipientes , Liposomas
2.
Int J Nanomedicine ; 18: 711-720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816333

RESUMEN

Introduction: The role of the human immune system in pathologic responses to chemicals including nanomaterials was identified as a gap in current hazard assessments. However, the complexity of the human immune system as well as interspecies variations make the development of predictive toxicity tests challenging. In the present study, we have analysed to what extent fluctuations of the complement system of different individuals will have an impact on the standardisation of immunological tests. Methods: We treated commercially available pooled sera (PS) from healthy males, individual sera from healthy donors and from patients suffering from cancer, immunodeficiency and allergies with small molecules and liposomes. Changes of iC3b protein levels measured in enzyme-linked immunosorbent assays served as biomarker for complement activation. Results: The level of complement activation in PS differed significantly from responses of individual donors (p < 0.01). Only seven out of 32 investigated sera from healthy donors responded similarly to the pooled serum. This variability was even more remarkable when investigating the effect of liposomes on the complement activation in sera from donors with pre-existing pathologies. Neither the 26 sera of donors with allergies nor sera of 16 donors with immunodeficiency responded similar to the PS of healthy donors. Allergy sufferers showed an increase in iC3b levels of 4.16-fold changes when compared to PS treated with liposomes. Discussion: Our studies demonstrate that the use of pooled serum can lead to an over- or under-estimation of immunological response in particular for individuals with pre-existing pathologies. This is of high relevance when developing medical products based on nanomaterials and asks for a review of the current practice to use PS from healthy donors for the prediction of immunological effects of drugs in patients. A better understanding of individual toxicological responses to xenobiotics should be an essential part in safety assessments.


Asunto(s)
Hipersensibilidad , Liposomas , Masculino , Humanos , Liposomas/farmacología , Activación de Complemento , Pruebas Inmunológicas , Complemento C3b
3.
Environ Int ; 158: 106921, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634620

RESUMEN

The uncertainty of potential risks associated with micro- and nanoplastics (MNPs) are of growing public concern. However, the diversity of MNPs in the environment makes a systematic analysis of potential health effects challenging. New tools and approaches are necessary to investigate biological effects of MNPs. With this quick scoping review, we aim to analyse the suitability of in vitro models for assessing the interaction of MNPs with intestinal cells. Our analysis revealed that currently the majority of in vitro tests are based on the three cell lines Caco-2, HT-29, and HCT-116. They have particularly been used to assess endpoints related to basal cytotoxicity, the internalisation of MNPs and effects on the intestinal barrier. When co-cultured with various cell lines, they also allow to investigate additional effects such as inflammation, metabolic actions and the relevance of the intestinal mucus. However, methodological gaps remain regarding the assessment of a potential accumulation of MNPs, leaching of additives/impurities and in resulting long-term effects as well as cell-type specific toxicities. In addition, only few in vitro studies investigated effects of MNPs on the microbiome. Stem cell-based assays using, for example, the emerging organoid technology are promising for analysing MNP effects on tissue-like structures, while avoiding the particular characteristics of the currently used cancer derived cell lines. The various cell lines and culture techniques can be combined in testing strategies, to better elucidate potential biological interaction of MNPs with biological systems. We suggest to implement a tiered testing strategy, in which monocultures can serve as a tool for high-throughput testing of MNPs. In the next steps co-cultures can be used to assess the potential of a systemic uptake of MNPs and organ-on-a-chip models will provide more reliable insights into relevant doses triggering biological effects. Finally, organoids can help to discover new and more complex reactions initiated by MNPs.


Asunto(s)
Intestinos , Microplásticos , Transporte Biológico , Células CACO-2 , Humanos
4.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467541

RESUMEN

This study aims to provide guidelines to design and perform a robust and reliable physical-chemical characterization of liposome-based nanomaterials, and to support method development with a specific focus on their inflammation-inducing potential. Out of eight differently functionalized liposomes selected as "case-studies", three passed the physical-chemical characterization ( in terms of size-distribution, homogeneity and stability) and the screening for bacterial contamination (sterility and apyrogenicity). Although all three were non-cytotoxic when tested in vitro, they showed a different capacity to activate human blood cells. HSPC/CHOL-coated liposomes elicited the production of several inflammation-related cytokines, while DPPC/CHOL- or DSPC/CHOL-functionalized liposomes did not. This work underlines the need for accurate characterization at multiple levels and the use of reliable in vitro methods, in order to obtain a realistic assessment of liposome-induced human inflammatory response, as a fundamental requirement of nanosafety regulations.


Asunto(s)
Citocinas/inmunología , Inmunidad Innata/inmunología , Mediadores de Inflamación/inmunología , Liposomas/inmunología , Nanoestructuras/química , Investigación Biomédica Traslacional/métodos , 1,2-Dipalmitoilfosfatidilcolina/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colesterol/química , Citocinas/metabolismo , Células Hep G2 , Humanos , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Liposomas/química , Liposomas/farmacología , Tamaño de la Partícula , Fosfatidilcolinas/química
5.
Int J Hyg Environ Health ; 227: 113515, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32305857

RESUMEN

BACKGROUND: The European Commission has developed and put in place the Information Platform for Chemical Monitoring Data (IPCHEM), to promote a more coherent approach to the generation, collection, storage and use of chemical monitoring data in relation to humans and the environment. OBJECTIVES: This paper describes the specific development of the IPCHEM thematic module "Products and Indoor Air Data" which aims to facilitate the retrieval of and access to existing and future chemical monitoring data sources stemming from e.g. national monitoring programs of EU Member States and EU funded projects. The current development focusses on harmonised data and metadata templates and code lists related to indoor air monitoring data. METHODS: The extension and revision of the IPCHEM metadata and data collection templates for indoor air monitoring data was based on harmonisation and standardisation efforts on the development of indoor air monitoring protocols and guidelines for monitoring indoor pollution attributed to chemical and biological stressors, which were undertaken by European Commission Services, EU funded projects and research networks and EU Members States. RESULTS: A list of ten candidate data collections for potential integration were identified and prioritised. A different level of relevance was attributed to the enhanced metadata and data elements (mandatory, recommended, optional) to allow for their flexible applicability by end users. These elements should be provided for reaching the required quality in the data documentation as well as for ensuring a correct data traceability and interpretation. CONCLUSIONS: The proposed enhanced metadata and data models of the IPCHEM thematic module "Products and Indoor Air Data" can be used by data providers when planning and setting up their future indoor air monitoring campaigns, or to further mapping and harmonising data elements of their existing data collections for further integration into IPCHEM. This will boost the effective implementation of a coordinated approach for collecting, accessing and sharing existing and future indoor air monitoring data in support of policy making.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Europa (Continente) , Metadatos , Modelos Teóricos
6.
Chemosphere ; 191: 937-945, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29145138

RESUMEN

Limonene oxidation products (LOPs) have gained interest on their harmful health effects over time. Recently, studies have shown that the selected LOPs: 4-oxopentanal (4-OPA), 3-isopropenyl-6-oxo-heptanal (IPOH) and 4-acetyl-1-methylcyclohexene (4-AMCH) have sensory irritation effects in mice and inflammatory effects in human lung cells. This study was therefore undertaken to investigate the potential capacity of 4-OPA, IPOH and 4-AMCH to cause cell membrane damage, oxidative stress and inflammation in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. Overall results suggest that 4-OPA, IPOH have cytotoxic effects on human lung cells that might be mediated by ROS: the highest concentration applied of IPOH [500 µM] enhanced ROS generation by 100-fold ± 7.7 (A549) and 230-fold ± 19.9 (16HBE14o-) compared to the baseline. 4-OPA [500 µM] increased ROS levels by 1.4-fold ± 0.3 (A549) and by 127-fold ± 10.5 (16HBE14o-), while treatment with 4-AMCH [500 µM] led to 0.9-fold ± 0.2 (A549) and 49-fold ± 12.8 (16HBE14o-) increase. IPOH [500 µM] caused a decrease in the thiol-state balance (e.g. after 2 h, GSH:GSSG was reduced by 37% compared to the untreated 16HBE14o-cells). 4-OPA [500 µM] decreased the GSH:GSSG by 1.3-fold change in A549 cells and 1.4-fold change in 16HBE14o-cells. No statistically significant decrease in the GSH:GSSG in A549 and 16HBE14o-cell lines was observed for 4-AMCH [500 µM]. In addition, IPOH and 4-OPA [31.2 µM] increased the amount of the inflammatory markers: RANTES, VEGF and EGF. On the other hand, 4-AMCH [31.2 µM] did not show inflammatory effects in A549 or 16HBE14o-cells. The 4-OPA, IPOH and 4-AMCH treatment concentration and time-dependently induce oxidative stress and/or alteration of inflammatory markers on human bronchial and alveolar cell lines.


Asunto(s)
Ciclohexenos/toxicidad , Inflamación/inducido químicamente , Pulmón/patología , Estrés Oxidativo/efectos de los fármacos , Terpenos/toxicidad , Células A549 , Aldehídos/farmacología , Línea Celular , Ciclohexanos/farmacología , Ciclohexenos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Inflamación/metabolismo , Cetonas/farmacología , Limoneno , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Terpenos/química
7.
Toxicol Lett ; 262: 70-79, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27575568

RESUMEN

Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC50=1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC50=3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC50 could not be calculated]. As a result from the inflammatory response, IPOH [50µM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50µM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50µM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability.


Asunto(s)
Aldehídos/toxicidad , Bronquios/patología , Ciclohexanos/toxicidad , Ciclohexenos/toxicidad , Células Epiteliales/patología , Inflamación/inducido químicamente , Cetonas/toxicidad , Monoterpenos/toxicidad , Alveolos Pulmonares/patología , Terpenos/toxicidad , Bronquios/citología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quimiocinas/metabolismo , Monoterpenos Ciclohexánicos , Ciclohexenos/química , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Humanos , Inflamación/metabolismo , Inflamación/patología , Limoneno , Oxidación-Reducción , Alveolos Pulmonares/citología , Terpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...