Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(43): eadj1010, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878694

RESUMEN

The time of day strongly influences adaptive behaviors like long-term memory, but the correlating synaptic and molecular mechanisms remain unclear. The circadian clock comprises a canonical transcription-translation feedback loop (TTFL) strictly dependent on the BMAL1 transcription factor. We report that BMAL1 rhythmically localizes to hippocampal synapses in a manner dependent on its phosphorylation at Ser42 [pBMAL1(S42)]. pBMAL1(S42) regulates the autophosphorylation of synaptic CaMKIIα and circadian rhythms of CaMKIIα-dependent molecular interactions and LTP but not global rest/activity behavior. Therefore, our results suggest a model in which repurposing of the clock protein BMAL1 to synapses locally gates the circadian timing of plasticity.


Asunto(s)
Factores de Transcripción ARNTL , Relojes Circadianos , Fosforilación , Factores de Transcripción ARNTL/genética , Ritmo Circadiano/fisiología , Hipocampo/metabolismo
2.
Nat Commun ; 14(1): 3720, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349305

RESUMEN

Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.


Asunto(s)
Barrera Hematoencefálica , Plexo Coroideo , Ratones , Masculino , Animales , Plexo Coroideo/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Hormonas Tiroideas/metabolismo , Prealbúmina/genética , Prealbúmina/metabolismo , Transporte Biológico
3.
J Cereb Blood Flow Metab ; 41(12): 3260-3272, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34229511

RESUMEN

Cerebrovascular reactivity (CVR) deficits in adolescents with concussion may persist after resolution of neurological symptoms. Whether or not CVR deficits predict long term neurological function is unknown. We used adolescent mice closed head injury (CHI) models (54 g, 107 cm or 117 cm drop height), followed by blood oxygenation level dependent (BOLD)-functional MRI with CO2 challenge to assess CVR and brain connectivity. At one week, 3HD 107 cm mice showed delayed BOLD responses (p = 0.0074), normal striatal connectivity, and an impaired respiratory rate response to CO2 challenge (p = 0.0061 in ΔRmax). The 107 cm group developed rotarod deficits at 6 months (p = 0.02) and altered post-CO2 brain connectivity (3-fold increase in striatum to motor cortex correlation coefficient) by one year, but resolved their CVR and respiratory rate impairments, and did not develop cognitive or circadian activity deficits. In contrast, the 117 cm group had persistent CVR (delay time: p = 0.016; washout time: p = 0.039) and circadian activity deficits (free-running period: 23.7 hr in sham vs 23.9 hr in 3HD; amplitude: 0.15 in sham vs 0.2 in 3HD; peak activity: 18 in sham vs 21 in 3HD) at one year. Persistent CVR deficits after concussion may portend long-term neurological dysfunction. Further studies are warranted to determine the utility of CVR to predict chronic neurological outcome after mild traumatic brain injury.


Asunto(s)
Conmoción Encefálica/sangre , Dióxido de Carbono/metabolismo , Circulación Cerebrovascular , Animales , Modelos Animales de Enfermedad , Masculino , Ratones
4.
Hum Mol Genet ; 29(2): 320-334, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31915823

RESUMEN

Deficiency of the adaptor protein complex 4 (AP-4) leads to childhood-onset hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). This study aims to evaluate the impact of loss-of-function variants in AP-4 subunits on intracellular protein trafficking using patient-derived cells. We investigated 15 patient-derived fibroblast lines and generated six lines of induced pluripotent stem cell (iPSC)-derived neurons covering a wide range of AP-4 variants. All patient-derived fibroblasts showed reduced levels of the AP4E1 subunit, a surrogate for levels of the AP-4 complex. The autophagy protein ATG9A accumulated in the trans-Golgi network and was depleted from peripheral compartments. Western blot analysis demonstrated a 3-5-fold increase in ATG9A expression in patient lines. ATG9A was redistributed upon re-expression of AP4B1 arguing that mistrafficking of ATG9A is AP-4-dependent. Examining the downstream effects of ATG9A mislocalization, we found that autophagic flux was intact in patient-derived fibroblasts both under nutrient-rich conditions and when autophagy is stimulated. Mitochondrial metabolism and intracellular iron content remained unchanged. In iPSC-derived cortical neurons from patients with AP4B1-associated SPG47, AP-4 subunit levels were reduced while ATG9A accumulated in the trans-Golgi network. Levels of the autophagy marker LC3-II were reduced, suggesting a neuron-specific alteration in autophagosome turnover. Neurite outgrowth and branching were reduced in AP-4-HSP neurons pointing to a role of AP-4-mediated protein trafficking in neuronal development. Collectively, our results establish ATG9A mislocalization as a key marker of AP-4 deficiency in patient-derived cells, including the first human neuron model of AP-4-HSP, which will aid diagnostic and therapeutic studies.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/genética , Paraplejía Espástica Hereditaria/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Complejo 4 de Proteína Adaptadora/deficiencia , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Adolescente , Autofagosomas/metabolismo , Autofagia/genética , Línea Celular , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hierro/metabolismo , Mutación con Pérdida de Función , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Paraplejía Espástica Hereditaria/genética , Red trans-Golgi/genética
5.
J Neurosci ; 39(25): 4847-4863, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30926746

RESUMEN

The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice. Aspartate content was significantly reduced in cerebral cortical extracts as well as synaptosomes from cerebral cortex of synGLT-1 KO compared with control littermates. 13C-Labeling of tricarboxylic acid cycle intermediates originating from metabolism of [U-13C]-glutamate was significantly reduced in synGLT-1 KO synaptosomes. The decreased aspartate content was due to diminished entry of glutamate into the tricarboxylic acid cycle. Pyruvate recycling, a pathway necessary for full glutamate oxidation, was also decreased. ATP production was significantly increased, despite unaltered oxygen consumption, in isolated mitochondria from the synGLT-1 KO. The density of mitochondria in axon terminals and perisynaptic astrocytes was increased in the synGLT-1 KO. Intramitochondrial cristae density of synGLT-1 KO mice was increased, suggesting increased mitochondrial efficiency, perhaps in compensation for reduced access to glutamate. SynGLT-1 KO synaptosomes exhibited an elevated oxygen consumption rate when stimulated with veratridine, despite a lower baseline oxygen consumption rate in the presence of glucose. GLT-1 expressed in neurons appears to be required to provide glutamate to synaptic mitochondria and is linked to neuronal energy metabolism and mitochondrial function.SIGNIFICANCE STATEMENT All synaptic transmitters need to be cleared from the extracellular space after release, and transporters are used to clear glutamate released from excitatory synapses. GLT-1 is the major glutamate transporter, and most GLT-1 is expressed in astrocytes. Only 5%-10% is expressed in neurons, primarily in axon terminals. The function of GLT-1 in axon terminals remains unknown. Here, we used a conditional KO approach to investigate the significance of the expression of GLT-1 in neurons. We found multiple abnormalities of mitochondrial function, suggesting impairment of glutamate utilization by synaptic mitochondria in the neuronal GLT-1 KO. These data suggest that GLT-1 expressed in axon terminals may be important in maintaining energy metabolism and biosynthetic activities mediated by presynaptic mitochondria.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Ácido Aspártico/metabolismo , Corteza Cerebral/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Consumo de Oxígeno/fisiología , Terminales Presinápticos/metabolismo , Sinapsis/genética , Sinaptosomas/metabolismo
6.
Neurobiol Learn Mem ; 160: 160-172, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30668981

RESUMEN

Sleep is a mysterious, developmentally regulated behavior fundamental for cognition in both adults and developing animals. A large number of studies offer a substantive body of evidence that demonstrates that the ontogeny of sleep architecture parallels brain development. Sleep deprivation impairs the consolidation of learned tasks into long-term memories and likely links sleep to the neural mechanisms underlying memory and its physiological roots in brain plasticity. Consistent with this notion is the alarming frequency of sleep and circadian rhythm dysfunction in children with neurodevelopmental disorders (NDDs). While the mechanisms underlying sleep dysfunction in most NDDs still remains poorly understood, here we will review several sentinel examples of monogenetic NDDs with both well-established connections to synaptic dysfunction and evidence of sleep or circadian dysfunction: Tuberous Sclerosis Complex, Fragile X Syndrome, and Angelman Syndrome. We suggest that the coincident maturation of sleep with synaptic physiology is one of the core reasons for the commonplace disruption of sleep in NDDs and argue that disorders with well-defined molecular genetics can provide a unique lens for understanding and unraveling the molecular correlates that link the development of sleep and circadian rhythms to health and disease.


Asunto(s)
Encéfalo , Trastornos Cronobiológicos/fisiopatología , Desarrollo Humano/fisiología , Trastornos del Neurodesarrollo/fisiopatología , Trastornos del Sueño-Vigilia/fisiopatología , Sinapsis/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Trastornos Cronobiológicos/metabolismo , Humanos , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Sueño-Vigilia/metabolismo
7.
Cancer Cell ; 34(3): 396-410.e8, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205044

RESUMEN

There is a pressing need to identify therapeutic targets in tumors with low mutation rates such as the malignant pediatric brain tumor medulloblastoma. To address this challenge, we quantitatively profiled global proteomes and phospho-proteomes of 45 medulloblastoma samples. Integrated analyses revealed that tumors with similar RNA expression vary extensively at the post-transcriptional and post-translational levels. We identified distinct pathways associated with two subsets of SHH tumors, and found post-translational modifications of MYC that are associated with poor outcomes in group 3 tumors. We found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. Our study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Meduloblastoma/patología , Procesamiento Proteico-Postraduccional , Adolescente , Adulto , Línea Celular Tumoral , Niño , Preescolar , Metilación de ADN , Proteína Quinasa Activada por ADN/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , Lactante , Masculino , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Análisis de Secuencia de ARN , Adulto Joven
8.
Neuropsychopharmacology ; 43(6): 1457-1465, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206810

RESUMEN

Drugs targeting metabotropic glutamate receptor 5 (mGluR5) have therapeutic potential in autism spectrum disorders (ASD), including tuberous sclerosis complex (TSC). The question whether inhibition or potentiation of mGluR5 could be beneficial depends, among other factors, on the specific indication. To facilitate the development of mGluR5 treatment strategies, we tested the therapeutic utility of mGluR5 negative and positive allosteric modulators (an mGluR5 NAM and PAM) for TSC, using a mutant mouse model with neuronal loss of Tsc2 that demonstrates disease-related phenotypes, including behavioral symptoms of ASD and epilepsy. This model uniquely enables the in vivo characterization and rescue of the electrographic seizures associated with TSC. We demonstrate that inhibition of mGluR5 corrects hyperactivity, seizures, and elevated de novo synaptic protein synthesis. Conversely, positive allosteric modulation of mGluR5 results in the exacerbation of hyperactivity and epileptic phenotypes. The data suggest a meaningful therapeutic potential for mGluR5 NAMs in TSC, which warrants clinical exploration and the continued development of mGluR5 therapies.


Asunto(s)
Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Esclerosis Tuberosa/tratamiento farmacológico , Regulación Alostérica , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Imidazoles/farmacología , Masculino , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Piridinas/farmacología , Ratas Long-Evans , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/metabolismo , Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
9.
Cell Rep ; 20(4): 868-880, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746872

RESUMEN

Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder characterized by mutations in either the TSC1 or TSC2 genes, whose products form a critical inhibitor of the mechanistic target of rapamycin (mTOR). Loss of TSC1/2 gene function renders an mTOR-overactivated state. Clinically, TSC manifests with epilepsy, intellectual disability, autism, and sleep dysfunction. Here, we report that mouse models of TSC have abnormal circadian rhythms. We show that mTOR regulates the proteostasis of the core clock protein BMAL1, affecting its translation, degradation, and subcellular localization. This results in elevated levels of BMAL1 and a dysfunctional clock that displays abnormal timekeeping under constant conditions and exaggerated responses to phase resetting. Genetically lowering the dose of BMAL1 rescues circadian behavioral phenotypes in TSC mouse models. These findings indicate that BMAL1 deregulation is a feature of the mTOR-activated state and suggest a molecular mechanism for mitigating circadian phenotypes in a neurodevelopmental disorder.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/fisiología , Proteostasis/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Ritmo Circadiano/genética , Inmunoprecipitación , Ratones , Ratones Noqueados , Proteostasis/genética , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/metabolismo , Serina-Treonina Quinasas TOR/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación
10.
Neuron ; 93(4): 747-765, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28231463

RESUMEN

Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders.


Asunto(s)
Ritmo Circadiano/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Conducta Animal/fisiología , Humanos
12.
Cell Rep ; 17(4): 1053-1070, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760312

RESUMEN

Tuberous sclerosis complex (TSC) is a neurodevelopmental disease caused by TSC1 or TSC2 mutations and subsequent activation of the mTORC1 kinase. Upon mTORC1 activation, anabolic metabolism, which requires mitochondria, is induced, yet at the same time the principal pathway for mitochondrial turnover, autophagy, is compromised. How mTORC1 activation impacts mitochondrial turnover in neurons remains unknown. Here, we demonstrate impaired mitochondrial homeostasis in neuronal in vitro and in vivo models of TSC. We find that Tsc1/2-deficient neurons accumulate mitochondria in cell bodies, but are depleted of axonal mitochondria, including those supporting presynaptic sites. Axonal and global mitophagy of damaged mitochondria is impaired, suggesting that decreased turnover may act upstream of impaired mitochondrial metabolism. Importantly, blocking mTORC1 or inducing mTOR-independent autophagy restores mitochondrial homeostasis. Our study clarifies the complex relationship between the TSC-mTORC1 pathway, autophagy, and mitophagy, and defines mitochondrial homeostasis as a therapeutic target for TSC and related diseases.


Asunto(s)
Dinámicas Mitocondriales , Mitofagia , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Animales , Autofagia , Axones/metabolismo , Respiración de la Célula , Humanos , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Mutación/genética , Células Madre Pluripotentes/metabolismo , Terminales Presinápticos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
13.
Ann Neurol ; 80(2): 233-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27315032

RESUMEN

OBJECTIVE: To obtain insights into mechanisms mediating changes in cortical excitability induced by cathodal transcranial direct current stimulation (tDCS). METHODS: Neocortical slices were exposed to direct current stimulation (DCS) delivered through Ag/AgCl electrodes over a range of current orientations, magnitudes, and durations. DCS-induced cortical plasticity and its receptor dependency were measured as the change in layer II/III field excitatory postsynaptic potentials by a multielectrode array, both with and without neurotransmitter receptor blockers or allosteric modulators. In vivo, tDCS was delivered to intact mice scalp via surface electrodes. Molecular consequences of DCS in vitro or tDCS in vivo were tested by immunoblot of protein extracted from stimulated slices or the neocortex harvested from stimulated intact mice. RESULTS: Cathodal DCS in vitro induces a long-term depression (DCS-LTD) of excitatory synaptic strength in both human and mouse neocortical slices. DCS-LTD is abolished with an mGluR5 negative allosteric modulator, mechanistic target of rapamycin (mTOR) inhibitor, and inhibitor of protein synthesis. However, DCS-LTD persists despite either γ-aminobutyric acid type A receptor or N-methyl-D-aspartate receptor inhibition. An mGluR5-positive allosteric modulator, in contrast, transformed transient synaptic depression resultant from brief DCS application into durable DCS-LTD. INTERPRETATION: We identify a novel molecular pathway by which tDCS modulates cortical excitability, and indicate a capacity for synergistic interaction between tDCS and pharmacologic mGluR5 facilitation. The findings support exploration of cathodal tDCS as a treatment of neurologic conditions characterized by aberrant regional cortical excitability referable to mGluR5-mTOR signaling. Ann Neurol 2016;80:233-246.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neocórtex/microbiología , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/fisiología , Estimulación Transcraneal de Corriente Directa , 2-Amino-5-fosfonovalerato/farmacología , Animales , Benzamidas/farmacología , Bicuculina/farmacología , Cicloheximida/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Humanos , Imidazoles/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Neocórtex/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/fisiología
14.
Cell ; 161(5): 1138-1151, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25981667

RESUMEN

The circadian timing system synchronizes cellular function by coordinating rhythmic transcription via a transcription-translational feedback loop. How the circadian system regulates gene expression at the translational level remains a mystery. Here, we show that the key circadian transcription factor BMAL1 associates with the translational machinery in the cytosol and promotes protein synthesis. The mTOR-effector kinase, ribosomal S6 protein kinase 1 (S6K1), an important regulator of translation, rhythmically phosphorylates BMAL1 at an evolutionarily conserved site. S6K1-mediated phosphorylation is critical for BMAL1 to both associate with the translational machinery and stimulate protein synthesis. Protein synthesis rates demonstrate circadian oscillations dependent on BMAL1. Thus, in addition to its critical role in circadian transcription, BMAL1 is a translation factor that links circadian timing and the mTOR signaling pathway. More broadly, these results expand the role of the circadian clock to the regulation of protein synthesis.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Citosol/metabolismo , Ratones , Fosforilación , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo
15.
Neuron ; 84(2): 275-91, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25374355

RESUMEN

The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Enfermedades del Sistema Nervioso Central/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...