Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 124(7): 3978-4020, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546847

RESUMEN

Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.

2.
Dent Mater ; 39(11): 1013-1021, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734972

RESUMEN

OBJECTIVE: To evaluate the potential of ethyl-2-(tosylmethyl)acrylate (ASEE) as chain transfer agent for the development of low-shrinkage photopolymerizable dental composites. METHODS: Composites containing 10, 20 and 30 mol% of ASEE in their organic matrix were formulated. Camphorquinone (CQ)/ethyl 4-(dimethylamino)benzoate (EDAB) (0.33 wt%/0.60 wt%), CQ/EDAB/Ivocerin® (0.33 wt%/0.60 wt%/0.10, 0.25 or 0.50 wt%), CQ/EDAB/SpeedCure 938 (SC-938) (0.33 wt%/0.60 wt%/0.30, 0.50 or 1.00 wt%) and Ivocerin® (0.50 wt%) were used as photoinitiator systems. The glass transition temperature (Tg) and the crosslink density were determined by DMTA measurements. The flexural strength/modulus and ambient light working time were assessed according to ISO 4049. The shrinkage force was evaluated using a universal testing machine. The double bond conversion (DBC) was determined by NIR spectroscopy. DBC, flexural strength and modulus were measured after the storage of the specimens in deionized water at 37 °C for 24 h. The DBC, flexural strength and modulus data were analyzed by one-way ANOVA with p = 0.05 as significance level. RESULTS: ASEE-based composites containing the classical initiator system CQ/EDAB exhibited low mechanical properties (flexural strength/modulus) and DBC. The screening of various photoinitiator systems showed that composites based on CQ/EDAB/Ivocerin® (0.33 wt%/0.60 wt%/0.50 wt%), Ivocerin® (0.50 wt%) or CQ/EDAB/SC-938 (0.33 wt%/0.60 wt%/1.00 wt%) were particularly attractive. Indeed, the use of these photoinitiator systems enabled the formulation of composites containing up to 30 mol% ASEE exhibiting excellent mechanical properties, high DBC, good network homogeneity and low shrinkage force values. Interestingly, the addition of SC-938 did not impair the ambient light working time of the uncured composites, whereas the incorporation of 0.50 wt% Ivocerin® resulted in a strong decrease of this value. SIGNIFICANCE: The addition of the allyl sulfone ASEE in combination with the initiator system CQ/EDAB/SC-938 (0.33 wt%/ 0.60 wt%/ 1.00 wt%) is a promising strategy to develop low-shrinkage dental composites which exhibit excellent mechanical properties, low shrinkage force, high DBC and suitable ambient light working time.

3.
Adv Healthc Mater ; 12(23): e2300520, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37173073

RESUMEN

Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.


Asunto(s)
Ingeniería de Tejidos , Injerto Vascular , Ratas , Animales , Microtomografía por Rayos X , Prótesis Vascular , Poliuretanos
4.
Chem Mater ; 34(7): 3042-3052, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35431440

RESUMEN

A series of nine soluble, symmetric chalcogenophenes bearing hexyl-substituted triphenylamines, indolocarbazoles, or phenylcarbazoles was designed and synthesized as potential two-photon absorption (2PA) initiators. A detailed photophysical analysis of these molecules revealed good 2PA properties of the series and, in particular, a strong influence of selenium on the 2PA cross sections, rendering these materials especially promising new 2PA photoinitiators. Structuring and threshold tests proved the efficiency and broad spectral versatility of two selenium-containing lead compounds as well as their applicability in an acrylate resin formulation. A comparison with commercial photoinitiators Irg369 and BAPO as well as sensitizer ITX showed that the newly designed selenium-based materials TPA-S and TPA-BBS outperform these traditional initiators by far both in terms of reactivity and dose. Moreover, by increasing the ultralow concentration of TPA-BBS, a further reduction of the polymerization threshold can be achieved, revealing the great potential of this series for application in two-photon polymerization (2PP) systems where only low laser power is available.

5.
Polym Chem ; 13(9): 1158-1168, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35341220

RESUMEN

Photolabile groups are the key components of photo-responsive polymers, dynamically tunable materials with multiple applications in materials and life sciences. They usually consist of a chromophore and a labile bond and are inherently light sensitive. An exception are disulfides, simple reversible linkages, which become photocleavable upon addition of a photoinitiator. Despite their practical features, disulfides are rarely utilized due to their impractical formation. Here, we report a disulfide-based linker series bearing norbornene terminals for facile crosslinking of thiol-functionalized macromers via light-triggered thiol-ene conjugation (TEC). Besides finding a highly reactive lead compound, we also identify an unexpected TEC-retardation, strongly dependent on the molecular linker structure and affecting hydrogel stability. Finally, we present a useful method for localized disulfide cleavage by two-photon irradiation permitting micropatterning of disulfide-crosslinked networks.

6.
Macromolecules ; 54(22): 10370-10380, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34840351

RESUMEN

Macroporous polymer monoliths prepared from high internal phase emulsions (HIPEs) can be found in various biomedical applications. While typically water-in-oil HIPEs are applied for polyHIPE preparation, they are not suitable for hydrophilic polyHIPE preparation. Herein, direct oil-in-water emulsions based on water-soluble poly(ethylene glycol)diacrylate or poly(ethylene glycol)dimethacrylate were developed. Furthermore, the incorporation of a hydrophilic water-miscible thiol, ethoxylated trimethylolpropane tris(3-mercaptopropionate) (ETTMP) was reported for the first time within thiol-ene polyHIPEs. Due to the transparency of the emulsions, rapid curing via photopolymerization was feasible. The average pore diameters of the resulting polyHIPEs ranged between 1.2 and 3.6 µm, and porosity of up to 90% was achieved. The water uptake of the materials reached up to 1000% by weight. Drug loading and release were demonstrated, employing salicylic acid as a model drug. Porous profile and biodegradability add to the usefulness of the material for biomedical applications.

7.
Polymers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34685265

RESUMEN

In this study, solvogels containing (2-((2-(ethoxycarbonyl)prop-2-en-1-yl)oxy)-ethyl) phosphonic acid (ECPA) and N,N'-diethyl-1,3-bis-(acrylamido)propane (BNEAA) as the crosslinker are synthesized by UV induced crosslinking photopolymerization in various solvents. The polymerization of the ECPA monomer is monitored by the conversion of double bonds with in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The morphology of the networks is characterized by in situ photorheology, solid state NMR spectroscopy, and scanning electron microscopy (SEM) of the dried gels. It is demonstrated that the storage modulus is not only determined by the crosslinker content in the gel, but also by the solvent used for preparation. The networks turn out to be porous structures with G' being governed by a rigid, phase-separated polymer phase rather than by entropic elasticity. The external and internal pKa values of the poly(ECPA-co-BNEAA) gels were determined by titration with a specially designed method and compared to the calculated values. The polymer-immobilized phosphonic acid groups in the hydrogels induce buffering behavior into the system without using a dissolved buffer. The calcium accumulation in the gels is studied by means of a double diffusion cell filled with calcium ion-containing solutions. The successful accumulation of hydroxyapatite within the gels is shown by a combination of SEM, energy-dispersive X-ray spectroscopy (EDX) and wide-angle X-ray scattering (WAXS).

8.
Nano Lett ; 21(1): 507-514, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33305952

RESUMEN

When T-cells probe their environment for antigens, the bond between the T-cell receptor (TCR) and the peptide-loaded major histocompatibility complex (MHC) is put under tension, thereby influencing the antigen discrimination. Yet, the quantification of such forces in the context of T-cell signaling is technically challenging. Here, we developed a traction force microscopy platform which allows for quantifying the pulls and pushes exerted via T-cell microvilli, in both tangential and normal directions, during T-cell activation. We immobilized specific T-cell activating antibodies on the marker beads used to read out the hydrogel deformation. Microvilli targeted the functionalized beads, as confirmed by superresolution microscopy of the local actin organization. Moreover, we found that cellular components, such as actin, TCR, and CD45 reorganize upon interaction with the beads, such that actin forms a vortex-like ring structure around the beads and TCR is enriched at the bead surface, whereas CD45 is excluded from bead-microvilli contacts.


Asunto(s)
Activación de Linfocitos , Tracción , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Linfocitos T
9.
Langmuir ; 36(44): 13292-13300, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33118809

RESUMEN

Achieving strong adhesion in wet environments remains a technological challenge in biomedical applications demanding biocompatibility. Attention for adhesive motifs meeting such demands has largely been focused on marine organisms. However, bioadhesion to inorganic surfaces is also present in the human body, in the hard tissues of teeth and bones, and is mediated through serines (S). The specific amino acid sequence DpSpSEEKC has been previously suggested to be responsible for the strong binding abilities of the protein statherin to hydroxyapatite, where pS denotes phosphorylated serine. Notably, similar sequences are present in the non-collagenous bone protein osteopontin (OPN) and the mussel foot protein 5 (Mefp5). OPN has previously been shown to promote fracture toughness and physiological damage formation. Here, we investigated the adhesion strength of the motif D(pS)(pS)EEKC on substrates of hydroxyapatite, TiO2, and mica using atomic force microscopy (AFM) single-molecule force spectroscopy (SMFS). Specifically, we investigated the dependence of adhesion force on phosphorylation of serines by comparing findings with the unphosphorylated variant DSSEEKC. Our results show that high adhesion forces of over 1 nN on hydroxyapatite and on TiO2 are only present for the phosphorylated variant D(pS)(pS)EEKC. This warrants further exploitation of this motif or similar residues in technological applications. Further, the dependence of adhesion force on phosphorylation suggests that biological systems potentially employ an adhesion-by-demand mechanism via expression of enzymes that up- or down-regulate phosphorylation, to increase or decrease adhesion forces, respectively.

10.
J Mech Behav Biomed Mater ; 112: 104077, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32942230

RESUMEN

An assessment tool to evaluate the degradation of biodegradable materials in a more physiological environment is still needed. Macrophages are critical players in host response, remodeling and degradation. In this study, a cell culture model using monocyte-derived primary macrophages was established to study the degradation, macro-/micro-mechanical behavior and inflammatory behavior of a new designed, biodegradable thermoplastic polyurethane (TPU) scaffold, over an extended period of time in vitro. For in vivo study, the scaffolds were implanted subcutaneously in a rat model for up to 36 weeks. TPU scaffolds were fabricated via the electrospinning method. This technique provided a fibrous scaffold with an average fiber diameter of 1.39 ± 0.76 µm and an average pore size of 7.5 ± 1.1 µm. The results showed that TPU scaffolds supported the attachment and migration of macrophages throughout the three-dimensional matrix. Scaffold degradation could be detected in localized areas, emphasizing the role of adherent macrophages in scaffold degradation. Weight loss, molecular weight and biomechanical strength reduction were evident in the presence of the primary macrophage cells. TPU favored the switch from initial pro-inflammatory response of macrophages to an anti-inflammatory response over time both in vitro and in vivo. Expression of MMP-2 and MMP-9 (the key enzymes in tissue remodeling based on ECM modifications) was also evident in vitro and in vivo. This study showed that the primary monocyte-derived cell culture model represents a promising tool to characterize the degradation, mechanical behavior as well as biocompatibility of the scaffolds during an extended period of observation.


Asunto(s)
Poliuretanos , Injerto Vascular , Animales , Técnicas de Cultivo de Célula , Macrófagos , Monocitos , Ratas , Ingeniería de Tejidos , Andamios del Tejido
11.
Nat Commun ; 11(1): 1925, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317631

RESUMEN

The nature of the electronic excited state of many symmetric multibranched donor-acceptor molecules varies from delocalized/multipolar to localized/dipolar depending on the environment. Solvent-driven localization breaks the symmetry and traps the exciton in one branch. Using a combination of ultrafast spectroscopies, we investigate how such excited-state symmetry breaking affects the photochemical reactivity of quadrupolar and octupolar A-(π-D)2,3 molecules with photoisomerizable A-π-D branches. Excited-state symmetry breaking is identified by monitoring several spectroscopic signatures of the multipolar delocalized exciton, including the S2 ← S1 electronic transition, whose energy reflects interbranch coupling. It occurs in all but nonpolar solvents. In polar media, it is rapidly followed by an alkyne-allene isomerization of the excited branch. In nonpolar solvents, slow and reversible isomerization corresponding to chemically-driven symmetry breaking, is observed. These findings reveal that the photoreactivity of large conjugated molecules can be tuned by controlling the localization of the excitation.

12.
Adv Biosyst ; 4(6): e2000016, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32329968

RESUMEN

Maintenance of the epithelium relies on stem cells residing within specialized microenvironments, known as epithelial crypts. Two-photon polymerization (2PP) is a valuable tool for fabricating 3D micro/nanostructures for stem cell niche engineering applications. Herein, biomimetic gelatin methacrylate-based constructs, replicating the precise geometry of the limbal epithelial crypt structures (limbal stem cell "microniches") as an exemplar epithelial niche, are fabricated using 2PP. Human limbal epithelial stem cells (hLESCs) are seeded within the microniches in xeno-free conditions to investigate their ability to repopulate the crypts and the expression of various differentiation markers. Cell proliferation and a zonation in cell phenotype along the z-axis are observed without the use of exogenous signaling molecules. Significant differences in cell phenotype between cells located at the base of the microniche and those situated towards the rim are observed, demonstrating that stem cell fate is strongly influenced by its location within a niche and the geometrical details of where it resides. This study provides insight into the influence of the niche's spatial geometry on hLESCs and demonstrates a flexible approach for the fabrication of biomimetic crypt-like structures in epithelial tissues. This has significant implications for regenerative medicine applications and can ultimately lead to implantable synthetic "niche-based" treatments.


Asunto(s)
Materiales Biomiméticos/química , Células Epiteliales/metabolismo , Nanoestructuras/química , Nicho de Células Madre , Células Madre/metabolismo , Ingeniería de Tejidos , Células Epiteliales/citología , Humanos , Células Madre/citología
13.
ACS Macro Lett ; 9(4): 546-551, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648510

RESUMEN

The cationic ring-opening polymerization (CROP) of 2-oxazolines gives polymers with unique characteristics arising from its polyamide backbones and structural versatility. Up to now, poly(2-oxazoline)s were obtained by classical thermal polymerization methods not aiming for application in bulk curing of structural polymers. We introduce the cationic photopolymerization of 2-oxazolines at elevated temperatures for the direct UV-induced curing of materials with exclusive chemical and structural particularities. After efficient photoinitiation via onium salt photoacid generators (PAGs), the immanent low-rate propagation is crucially promoted by thermal energy input to the ring-opening reaction. In simultaneous thermal analysis (STA), photo-DSC, and (thermo)mechanical analyses we investigated the UV-induced CROP of 2-oxazolines in a temperature range of 100-140 °C and show the exceptional potential of the introduced photopolymers. Furthermore, we applied the photopolymerizable system in Hot Lithography, a stereolithography-based 3D printing technology at elevated temperatures.

14.
Biomacromolecules ; 21(2): 376-387, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31718163

RESUMEN

We report biodegradable thermoplastic polyurethanes for soft tissue engineering applications, where frequently used carboxylic acid ester degradation motifs were substituted with carbonate moieties to achieve superior degradation properties. While the use of carbonates in soft blocks has been reported, their use in hard blocks of thermoplastic polyurethanes is unprecedented. Soft blocks consist of poly(hexamethylene carbonate), and hard blocks combine hexamethylene diisocyanate with the newly synthesized cleavable carbonate chain extender bis(3-hydroxypropylene)carbonate (BHPC), mimicking the motif of poly(trimethylene carbonate) with highly regarded degradation properties. Simultaneously, the mechanical benefits of segmented polyurethanes are exploited. A lower hard block concentration in BHPC-based polymers was more suitable for vascular grafts. Nonacidic degradation products and hard block dependent degradation rates were found. Implantation of BHPC-based electrospun degradable vascular prostheses in a small animal model revealed high patency rates and no signs of aneurysm formations. Specific vascular graft remodeling and only minimal signs of inflammatory reactions were observed.


Asunto(s)
Materiales Biocompatibles/química , Prótesis Vascular , Cemento de Policarboxilato/química , Poliuretanos/química , Animales , Aorta/patología , Aorta/cirugía , Fenómenos Biomecánicos , Isocianatos/química , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Implantación de Prótesis , Ratas Sprague-Dawley , Espectroscopía Infrarroja por Transformada de Fourier
15.
ACS Appl Mater Interfaces ; 11(10): 9730-9739, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30747515

RESUMEN

Oxygen plays a pivotal role in cellular homeostasis, and its partial pressure determines cellular function and fate. Consequently, the ability to control oxygen tension is a critical parameter for recreating physiologically relevant in vitro culture conditions for mammalian cells and microorganisms. Despite its importance, most microdevices and organ-on-a-chip systems to date overlook oxygen gradient parameters because controlling oxygen often requires bulky and expensive external instrumental setups. To overcome this limitation, we have adapted an off-stoichiometric thiol-ene-epoxy polymer to efficiently remove dissolved oxygen to below 1 hPa and also integrated this modified polymer into a functional biochip material. The relevance of using an oxygen scavenging material in microfluidics is that it makes it feasible to readily control oxygen depletion rates inside the biochip by simply changing the surface-to-volume aspect ratio of the microfluidic channel network as well as by changing the temperature and curing times during the fabrication process.


Asunto(s)
Técnicas de Cultivo de Célula , Microfluídica , Oxígeno/aislamiento & purificación , Polímeros/química , Dispositivos Laboratorio en un Chip , Análisis por Micromatrices , Oxígeno/química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
16.
Sci Rep ; 8(1): 17273, 2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467346

RESUMEN

Two-photon induced polymerization (2PP) based 3D printing is a powerful microfabrication tool. Specialized two-photon initiators (2PIs) are critical components of the employed photosensitive polymerizable formulations. This work investigates the cooperative enhancement of two-photon absorption cross sections (σ2PA) in a series of 1,3,5-triazine-derivatives bearing 1-3 aminostyryl-donor arms, creating dipolar, quadrupolar and octupolar push-pull systems. The multipolar 2PIs were successfully prepared and characterized, σ2PA were determined using z-scan at 800 nm as well as spectrally resolved two-photon excited fluorescence measurements, and the results were compared to high-level ab initio computations. Modern tunable femtosecond lasers allow 2PP-processing at optimum wavelengths tailored to the absorption behavior of the 2PI. 2PP structuring tests revealed that while performance at 800 nm is similar, at their respective σ2PA-maxima the octupolar triazine-derivative outperforms a well-established ketone-based quadrupolar reference 2PI, with significantly lower fabrication threshold at exceedingly high writing speeds up to 200 mm/s and a broader window for ideal processing parameters.

17.
Angew Chem Int Ed Engl ; 57(46): 15122-15127, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30191643

RESUMEN

Photodegradable hydrogels have emerged as useful platforms for research on cell function, tissue engineering, and cell delivery as their physical and chemical properties can be dynamically controlled by the use of light. The photo-induced degradation of such hydrogel systems is commonly based on the integration of photolabile o-nitrobenzyl derivatives to the hydrogel backbone, because such linkers can be cleaved by means of one- and two-photon absorption. Herein we describe a cytocompatible click-based hydrogel containing o-nitrobenzyl ester linkages between a hyaluronic acid backbone, which is photodegradable in the presence of cells. It is demonstrated for the first time that by using a cyclic benzylidene ketone-based small molecule as photosensitizer the efficiency of the two-photon degradation process can be improved significantly. Biocompatibility of both the improved two-photon micropatterning process as well as the hydrogel itself is confirmed by cell culture studies.


Asunto(s)
Compuestos de Bencilideno/química , Materiales Biocompatibles/química , Ácido Hialurónico/química , Hidrogeles/química , Fotólisis , Polietilenglicoles/química , Línea Celular , Química Clic , Humanos , Células Madre Mesenquimatosas/citología , Nitrobencenos/química , Fotones , Fármacos Fotosensibilizantes/química , Compuestos de Sulfhidrilo/química , Ingeniería de Tejidos
18.
Angew Chem Int Ed Engl ; 57(29): 9165-9169, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29729079

RESUMEN

The formation of networks through light-initiated radical polymerization allows little freedom for tailored network design. The resulting inhomogeneous network architectures and brittle material behavior of such glassy-type networks limit the commercial application of photopolymers in 3D printing, biomedicine, and microelectronics. An ester-activated vinyl sulfonate ester (EVS) is presented for the rapid formation of tailored methacrylate-based networks. The chain transfer step induced by EVS reduces the kinetic chain length of the photopolymer, thus shifting the gel point to higher conversion, which results in reduced shrinkage stress and higher overall conversion. The resulting, more homogeneous network is responsible for the high toughness of the material. The unique property of EVS to promote nearly retardation-free polymerization can be attributed to the fact that after the transfer step no polymerizable double bond is formed, as is usually seen in classical chain transfer agents. Laser flash photolysis, theoretical calculations, and photoreactor studies were used to elucidate the fast chain transfer reaction and exceptional regulating ability of EVS. Final photopolymer networks exhibit improved mechanical performance making EVS an outstanding candidate for the 3D printing of tough photopolymers.

19.
Angew Chem Int Ed Engl ; 57(37): 12146-12150, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-29738630

RESUMEN

Within this work, a novel acylstannane-based photoinitiator (PI) is presented. Tetrakis(2,4,6-trimethylbenzoyl)stannane (1) displays outstanding properties compared to state-of-the-art acylgermane-based initiators. Most importantly, the initiator shows absorption up to 550 nm, which allows higher penetration depths, especially in highly filled photopolymers. Besides that, 1 shows extremely high photoinitiating activity towards (meth)acrylic double bonds, as well as very fast photobleaching. Furthermore, unlike many organotin compounds, 1 shows surprisingly low cytotoxicity.

20.
Chem Commun (Camb) ; 54(8): 920-923, 2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29318224

RESUMEN

A bis(acyl)phosphane oxide (BAPO) photoinitiator was conveniently synthesized in an efficient one-pot process. It shows excellent dispersibility in water, good storage stability, and high photo-reactivity in 3D printing of hydrogels under visible-light irradiation (460 nm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...