Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Front Public Health ; 10: 869041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692318

RESUMEN

Inflammation is considered a key event in the pathology of many chronic diseases, including pulmonary and systemic particle induced effects. In addition, inflammation is now considered as the key response in standard setting for poorly-soluble low toxicity (PSLT) particles and also the critical endpoint to screen for in OECD based sub-chronic animal inhalation testing protocols. During Particles & Health 2021, an afternoon session was dedicated to the subject and a brief summary of the most important messages are summarized in this paper. In the first part of this session, two speakers (Prof. Lison and Dr Duffin) provided state of the art insight into different aspects and sequels to (persistent) inflammation as a protective or adverse response. Most recent insights on the role of different macrophage cell types were presented as well as perspectives and data provided by inflammatory pathways in humans, such as in asthma and COPD. A brief review of the expert workshop on PSLT particles focusing on the regulatory impact of using persistent inflammation as a key outcome was provided by Kevin Driscoll. The second part of the session focused on the outcomes that are associated with inflammation in animal studies, with an emphasis by Drs. Harkema (Michigan State) and Weber (Anapath) on cell proliferation and other pathologies that need to be considered when comparing human and animal responses, such as outcomes from 14- or 28 day inhalation studies used for specific target organ toxicity classification.


Asunto(s)
Inflamación , Pulmón , Administración por Inhalación , Animales , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Tamaño de la Partícula
2.
Regul Toxicol Pharmacol ; 130: 105121, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35063568

RESUMEN

Excessive inhalation of cobalt (Co) dust can have harmful effects on the respiratory tract, yet all cobalt substances do not have the same potential for inducing toxicity. The prevalent hypothesis is that the potential of Co substances to release Co2+ ions in the organism and in cells drives their toxicity profile. Here, we explored the possibility of grouping Co substances for predicting inhalation toxicity based on in vitro data using the stabilization of hypoxia-inducible factor (HIF)-1α as a read out for intracellular Co ion content. We evaluated the potential of 11 inorganic Co compounds and two Co metal powder samples to stabilize intracellular HIF-1α in alveolar epithelial cells (A549) after 24 h exposure to 250-1000 µM Co equivalents. Cytotoxic activity of the substances was assessed in parallel after 72 h at the same doses. Two groups were identified: (1) substances with high intracellular bioavailability (n=9), causing cytotoxicity and stabilizing HIF-1α and (2) substances with low intracellular bioavailability (n = 4), and not inducing these effects. This study provides a link between screening-level data (solubility in artificial lung fluids, Tier 1) and hypothesized biological key events.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Cobalto/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Células A549 , Supervivencia Celular/efectos de los fármacos , Cobalto/farmacocinética , Endotoxinas/biosíntesis , Humanos , Exposición por Inhalación , Pruebas de Toxicidad
3.
Nanotoxicology ; 15(7): 934-950, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34380002

RESUMEN

Rodent studies on the effects of engineered nanomaterials (ENM) on the gut microbiome have revealed contradictory results. Our aim was to assess the effects of four well-investigated model ENM using a realistic exposure scenario. Two independent ad libitum feeding studies were performed. In study 1, female mice from the local breeding facility received feed pellets containing 1% CeO2 or 1% SiO2 for three weeks. In study 2, both female and male mice were purchased and exposed to 0.2% Ag-PVP or 1% TiO2 for four weeks. A next generation 16S rDNA sequencing-based approach was applied to assess impacts on the gut microbiome. None of the ENM had an effect on the α- or ß-diversity. A decreased relative abundance of the phylum Actinobacteria was observed in SiO2 exposed mice. In female mice, the relative abundance of the genus Roseburia was increased with Ag exposure. Furthermore, in study 2, a sex-related difference in the ß-diversity was observed. A difference in the ß-diversity was also shown between the female control mice of the two studies. We did not find major effects on the gut microbiome. This contrast to other studies may be due to variations in the study design. Our investigation underlined the important role of the sex of test animals and their microbiome composition prior to ENM exposure initiation. Hence, standardization of microbiome studies is strongly required to increase comparability. The ENM-specific effects on Actinobacteria and Roseburia, two taxa pivotal for the human gut homeostasis, warrant further research on their relevance for health.


Asunto(s)
Microbioma Gastrointestinal , Nanoestructuras , Animales , Exposición Dietética , Femenino , Masculino , Ratones , Dióxido de Silicio/toxicidad , Titanio
4.
Front Immunol ; 12: 666107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194430

RESUMEN

Macrophages are not only derived from circulating blood monocytes or embryonic precursors but also expand by proliferation. The origin determines macrophage fate and functions in steady state and pathological conditions. Macrophages predominantly infiltrate fibre-induced mesothelioma tumors and contribute to cancer development. Here, we revealed their ontogeny by comparing the response to needle-like mesotheliomagenic carbon nanotubes (CNT-7) with tangled-like non-mesotheliomagenic CNT-T. In a rat peritoneal cavity model of mesothelioma, both CNT induced a rapid macrophage disappearance reaction (MDR) of MHCIIlow resident macrophages generating an empty niche available for macrophage repopulation. Macrophage depletion after mesotheliomagenic CNT-7 was followed by a substantial inflammatory reaction, and macrophage replenishment completed after 7 days. Thirty days after non-mesotheliomagenic CNT-T, macrophage repopulation was still incomplete and accompanied by a limited inflammatory reaction. Cell depletion experiments, flow cytometry and RNA-seq analysis demonstrated that, after mesotheliomagenic CNT-7 exposure, resident macrophages were mainly replaced by an influx of monocytes, which differentiated locally into MHCIIhigh inflammatory macrophages. In contrast, the low inflammatory response induced by CNT-T was associated by the accumulation of self-renewing MHCIIlow macrophages that initially derive from monocytes. In conclusion, the mesotheliomagenic response to CNT specifically relies on macrophage niche recolonization by monocyte-derived inflammatory macrophages. In contrast, the apparent homeostasis after non-mesotheliomagenic CNT treatment involves a macrophage regeneration by proliferation. Macrophage depletion and repopulation are thus decisive events characterizing the carcinogenic activity of particles and fibres.


Asunto(s)
Macrófagos/inmunología , Mesotelioma/inmunología , Monocitos/inmunología , Nanotubos de Carbono/efectos adversos , Animales , Diferenciación Celular , Proliferación Celular , Antígenos de Histocompatibilidad Clase II/metabolismo , Inflamación , Macrófagos/citología , Macrófagos/metabolismo , Mesotelioma/inducido químicamente , Monocitos/citología , Monocitos/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Cavidad Peritoneal/citología , Ratas
5.
Food Chem Toxicol ; 154: 112352, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34153347

RESUMEN

BACKGROUND: Nanotechnologies provide new opportunities for improving the safety, quality, shelf life, flavor and appearance of foods. The most common nanoparticles (NPs) in human diet are silver metal, mainly present in food packaging and appliances, and silicon and titanium dioxides used as additives. The rapid development and commercialization of consumer products containing these engineered NPs is, however, not well supported by appropriate toxicological studies and risk assessment. Local and systemic toxicity and/or disruption of the gut microbiota (GM) have already been observed after oral administration of NPs in experimental animals, but results are not consistent and doses used were often much higher than the estimated human intakes. In view of the strong evidence linking alterations of the GM to cardiometabolic (CM) diseases, we hypothesized that dietary NPs might disturb this GM-CM axis. MATERIALS AND METHODS: We exposed male C57BL/6JRj mice (n = 13 per dose group) to dietary NPs mixed in food pellets at doses relevant for human exposure: Ag (0, 4, 40 or 400 µg/kg pellet), SiO2 (0, 0.8, 8 and 80 mg/kg pellet) or TiO2 (0, 0.4, 4 or 40 mg/kg pellet). After 24 weeks of exposure, we assessed effects on the GM and CM health (n = 8 per dose group). The reversibility of the effects was examined after 8 additional weeks without NPs exposure (recovery period, n ≤ 5 per dose group). RESULTS: No overt toxicity was recorded. The GM ß-diversity was dose-dependently disrupted by the three NPs, and the bacterial short chain fatty acids (SCFAs) were dose-dependently reduced after the administration of SiO2 and TiO2 NPs. These effects disappeared completely or partly after the recovery period, strengthening the association with dietary NPs. We did not observe atheromatous disease or glucose intolerance after NP exposure. Instead, dose-dependent decreases in the expression of IL-6 in the liver, circulating triglycerides (TG) and urea nitrogen (BUN) were recorded after administration of the NPs. CONCLUSION: We found that long-term oral exposure to dietary NPs at doses relevant for estimated human intakes disrupts the GM composition and function. These modifications did not appear associated with atheromatous or deleterious metabolic outcomes.


Asunto(s)
Exposición Dietética/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Nanopartículas del Metal/química , Administración Oral , Animales , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Ácidos Grasos Volátiles/metabolismo , Interleucina-6/metabolismo , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/toxicidad , Ratones Endogámicos C57BL , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/farmacología , Dióxido de Silicio/toxicidad , Plata/administración & dosificación , Plata/farmacología , Plata/toxicidad , Titanio/administración & dosificación , Titanio/farmacología , Titanio/toxicidad , Triglicéridos/metabolismo
6.
Arch Toxicol ; 95(4): 1251-1266, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33779765

RESUMEN

CONTEXT: The addition of silver (Ag) to food items, and its migration from food packaging and appliances results in a dietary exposure in humans, estimated to 70-90 µg Ag/day. In view of the well-known bactericidal activity of Ag ions, concerns arise about a possible impact of dietary Ag on the gut microbiota (GM), which is a master determinant of human health and diseases. Repeated oral administration of Ag acetate (AgAc) can also cause systemic toxicity in rats with reported NOAELs of 4 mg AgAc/b.w./d for impaired fertility and 0.4 mg AgAc/b.w./d for developmental toxicity. OBJECTIVE: The objective of this study was to investigate whether oral exposure to AgAc can induce GM alterations at doses causing reproductive toxicity in rats. METHODS: Male and female Wistar rats were exposed during 10 weeks to AgAc incorporated into food (0, 0.4, 4 or 40 mg/kg b.w./d), and we analyzed the composition of the GM (α- and ß-diversity). We documented bacterial function by measuring short-chain fatty acid (SCFA) production in cecal content. Ferroxidase activity, a biomarker of systemic Ag toxicity, was measured in serum. RESULTS AND CONCLUSIONS: From 4 mg/kg b.w./d onwards, we recorded systemic toxicity, as indicated by the reduction of serum ferroxidase activity, as well as serum Cu and Se concentrations. This systemic toxic response to AgAc might contribute to explain reprotoxic manifestations. We observed a dose-dependent modification of the GM composition in male rats exposed to AgAc. No impact of AgAc exposure on the production of bacterial SCFA was recorded. The limited GM changes recorded in this study do not appear related to a reprotoxicity outcome.


Asunto(s)
Acetatos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Reproducción/efectos de los fármacos , Compuestos de Plata/toxicidad , Acetatos/administración & dosificación , Administración Oral , Animales , Ceruloplasmina/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Nivel sin Efectos Adversos Observados , Ratas , Ratas Wistar , Compuestos de Plata/administración & dosificación
7.
Part Fibre Toxicol ; 18(1): 7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563307

RESUMEN

BACKGROUND: Ambient air pollution by particulate matters, including diesel exhaust particles (DEP), is a major cause of cardiovascular and metabolic mortality worldwide. The mechanisms by which DEP cause these adverse outcomes are not completely understood. Because the gut microbiota controls cardiovascular and metabolic health, we hypothesized that the fraction of inhaled DEP which reach the gut after mucociliary clearance and swallowing might induce gut dysbiosis and, in turn, contribute to aggravate or induce cardiovascular and metabolic diseases. RESULTS: Female ApoE-/- mice fed a Western diet, and wild-type (C57Bl/6) mice fed standard diet were gavaged with DEP (SRM2975) doses corresponding to mucociliary clearance from inhalation exposure (200 or 1000 ng/day, 3 times a week for 3 months; and 40, 200 or 1000 ng/day, 3 times a week for 6 months, respectively). No mortality, overt systemic or digestive toxicity was observed. A dose-dependent alteration of the gut microbiota was recorded in both strains. In ApoE-/-, ß-diversity was modified by DEP, but no significant modification of the relative abundance of the phyla, families or genera was identified. In C57BL/6 mice, DEP reduced α-diversity (Shannon and Simpson indices), and modified ß-diversity, including a reduction of the Proteobacteria and Patescibacteria phyla, and an increase of the Campylobacterota phylum. In both mouse models, perturbation of the gut microbiota composition was associated with a dose-dependent reduction of bacterial short chain fatty acids (butyrate and propionate) in cecal content. However, DEP ingestion did not aggravate (ApoE-/-), or induce (C57BL/6 mice) atherosclerotic plaques, and no metabolic alteration (glucose tolerance, resistance to insulin, or lipidemia) was recorded. CONCLUSIONS: We show here that oral exposure to DEP, at doses relevant for human health, changes the composition and function of the gut microbiota. These modifications were, however, not translated into ultimate atherosclerotic or metabolic outcomes.


Asunto(s)
Microbioma Gastrointestinal , Administración Oral , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Material Particulado , Emisiones de Vehículos
8.
Part Fibre Toxicol ; 18(1): 9, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602232

RESUMEN

BACKGROUND: In vitro models are widely used in nanotoxicology. In these assays, a careful documentation of the fraction of nanomaterials that reaches the cells, i.e. the in vitro delivered dose, is a critical element for the interpretation of the data. The in vitro delivered dose can be measured by quantifying the amount of material in contact with the cells, or can be estimated by applying particokinetic models. For carbon nanotubes (CNTs), the determination of the in vitro delivered dose is not evident because their quantification in biological matrices is difficult, and particokinetic models are not adapted to high aspect ratio materials. Here, we applied a rapid and direct approach, based on femtosecond pulsed laser microscopy (FPLM), to assess the in vitro delivered dose of multi-walled CNTs (MWCNTs). METHODS AND RESULTS: We incubated mouse lung fibroblasts (MLg) and differentiated human monocytic cells (THP-1) in 96-well plates for 24 h with a set of different MWCNTs. The cytotoxic response to the MWCNTs was evaluated using the WST-1 assay in both cell lines, and the pro-inflammatory response was determined by measuring the release of IL-1ß by THP-1 cells. Contrasting cell responses were observed across the MWCNTs. The sedimentation rate of the different MWCNTs was assessed by monitoring turbidity decay with time in cell culture medium. These turbidity measurements revealed some differences among the MWCNT samples which, however, did not parallel the contrasting cell responses. FPLM measurements in cell culture wells revealed that the in vitro delivered MWCNT dose did not parallel sedimentation data, and suggested that cultured cells contributed to set up the delivered dose. The FPLM data allowed, for each MWCNT sample, an adjustment of the measured cytotoxicity and IL-1ß responses to the delivered doses. This adjusted in vitro activity led to another toxicity ranking of the MWCNT samples as compared to the unadjusted activities. In macrophages, this adjusted ranking was consistent with existing knowledge on the impact of surface MWCNT functionalization on cytotoxicity, and might better reflect the intrinsic activity of the MWCNT samples. CONCLUSION: The present study further highlights the need to estimate the in vitro delivered dose in cell culture experiments with nanomaterials. The FPLM measurement of the in vitro delivered dose of MWCNTs can enrich experimental results, and may refine our understanding of their interactions with cells.


Asunto(s)
Nanotubos de Carbono , Técnicas de Cultivo de Célula , Macrófagos , Microscopía Confocal , Monocitos
9.
Clin Chem Lab Med ; 59(4): 729-742, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33085632

RESUMEN

OBJECTIVES: Trace elements (TEs) from natural and anthropogenic sources are ubiquitous. Essential or not, their relevance for human health and disease is constantly expanding. Biological monitoring is a widely integrated tool in risk assessment both in occupational and environmental settings. However, the determination of appropriate and accurate reference values in the (specific) population is a prerequisite for a correct interpretation of biomonitoring data. This study aimed at determining the reference distribution for TEs (Al, As, Sb, Be, Bi, Cd, Co, Cu, Mn, Hg, Mo, Ni, Pb, Se, Tl, Sn, V, Zn) in the blood and/or plasma of the adult population in Belgium. METHODS: Blood and plasma samples were analyzed for 178 males and 202 females, recruited according to an a priori selection procedure, by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: Reference values were established with high confidence for AsT, Cd, Cu, HgT, Mn, Mo, Pb, Sn, Se, Tl and Zn. Compared to previously published data in the Belgian population, a decreasing time trend is observed for Zn, Cd and Pb. Globally, the results also indicate that the current exposure levels to TEs in the Belgian population are similar to those from other recent national surveys. CONCLUSIONS: These reference values and limits obtained through validated analytical and statistical methods will be useful for future occupational and/or environmental surveys. They will contribute to decision-making concerning both public health policies but also exposure assessments on an individual scale.


Asunto(s)
Oligoelementos , Adulto , Bélgica , Cadmio , Femenino , Humanos , Plomo , Masculino , Valores de Referencia , Oligoelementos/análisis , Oligoelementos/metabolismo , Oligoelementos/normas
10.
Part Fibre Toxicol ; 17(1): 60, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243293

RESUMEN

BACKGROUND: Inhalation of multi-walled carbon nanotubes (MWCNTs) poses a potential risk to human health. In order to safeguard workers and consumers, the toxic properties of MWCNTs need to be identified. Functionalization has been shown to either decrease or increase MWCNT-related pulmonary injury, depending on the type of modification. We, therefore, investigated both acute and chronic pulmonary toxicity of a library of MWCNTs derived from a common pristine parent compound (NC7000). METHODS: MWCNTs were thermally or chemically purified and subsequently surface functionalized by carboxylation or amination. To evaluate pulmonary toxicity, male C57BL6 mice were dosed via oropharyngeal aspiration with either 1.6 or 4 mg/kg of each MWCNT type. Mitsui-7 MWCNT was used as a positive control. Necropsy was performed at days 3 and 60 post-exposure to collect bronchoalveolar lavage fluid (BALF) and lungs. RESULTS: At day 3 all MWCNTs increased the number of neutrophils in BALF. Chemical purification had a greater effect on pro-inflammatory cytokines (IL-1ß, IL-6, CXCL1) in BALF, while thermal purification had a greater effect on pro-fibrotic cytokines (CCL2, OPN, TGF-ß1). At day 60, thermally purified, carboxylated MWCNTs had the strongest effect on lymphocyte numbers in BALF. Thermally purified MWCNTs caused the greatest increase in LDH and total protein in BALF. Furthermore, the thermally purified and carboxyl- or amine-functionalized MWCNTs caused the greatest number of granulomatous lesions in the lungs. The physicochemical characteristics mainly associated with increased toxicity of the thermally purified derivatives were decreased surface defects and decreased amorphous content as indicated by Raman spectroscopy. CONCLUSIONS: These data demonstrate that the purification method is an important determinant of lung toxicity induced by carboxyl- and amine-functionalized MWCNTs.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Exposición por Inhalación , Lesión Pulmonar , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(45): 27836-27846, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097669

RESUMEN

Inhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive. Here, we have identified a unique subfamily of silanols as the major determinant of silica particle toxicity. This population of "nearly free silanols" (NFS) appears on the surface of quartz particles upon fracture and can be modulated by thermal treatments. Density functional theory calculations indicates that NFS locate at an intersilanol distance of 4.00 to 6.00 Å and form weak mutual interactions. Thus, NFS could act as an energetically favorable moiety at the surface of silica for establishing interactions with cell membrane components to initiate toxicity. With ad hoc prepared model quartz particles enriched or depleted in NFS, we demonstrate that NFS drive toxicity, including membranolysis, in vitro proinflammatory activity, and lung inflammation. The toxic activity of NFS is confirmed with pyrogenic and vitreous amorphous silica particles, and industrial quartz samples with noncontrolled surfaces. Our results identify the missing key molecular moieties of the silica surface that initiate interactions with cell membranes, leading to pathological outcomes. NFS may explain other important interfacial processes involving silica particles.


Asunto(s)
Silanos/química , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Membrana Celular , Cristalización , Polvo , Tamaño de la Partícula , Cuarzo/química , Cuarzo/toxicidad , Propiedades de Superficie
13.
J Toxicol ; 2020: 8261058, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32399030

RESUMEN

Cymbopogon giganteus Chiov. (Poaceae) is a medicinal plant used to treat various diseases in traditional medicine in several African countries. The present study aims to evaluate the oral and inhalation toxicity as well as the mutagenic effects of the essential oil of Cymbopogon giganteus leaves (EOCG) from a sample collected in Benin. Mutagenic potential was assessed by the Ames test using Salmonella typhimurium strains TA98 and TA100. Oral acute toxicity was carried out by administration of a single dose of 2000 mg/kg b.w. to Wistar rats while oral subacute toxicity was assessed by daily administration of 50 and 500 mg/kg of EOCG for 28 days. Finally, inhalation toxicity was assessed by administration of a single dose of 0.125%, 0.5%, 2% or 5% v/v of EOCG emulsions in 0.05% v/v lecithin solution in sterile water for the first experiment, and in a second one by administration of single dose of 0.125% or 0.5% v/v. A broncho-alveolar lavage was performed after 3 h or 24 h, respectively. The results show that EOCG is not mutagenic on Salmonella typhimurium strains at the highest concentration tested (200 µg/plate). In the acute oral toxicity study, EOCG induce neither mortality nor toxicity, showing that the LD50 is greater than 2000 mg/kg. The subacute oral toxicity study at both doses did not show any significant difference in body weight, relative organ weight, hematological and/or biochemical parameters or histopathology as compared to the control group. EOCG induced mortality and inflammation in lungs 3 h after administration of a single dose of 5% or 2% v/v. Single doses of 0.125% or 0.5% v/v did not induce inflammation, cell recruitment nor cytotoxicity in lungs 3 h or 24 h after administration, suggesting safety at these concentrations. This first report on the in vivo toxicity will be useful to guide safe uses of EOCG.

14.
PLoS One ; 15(4): e0231634, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32298350

RESUMEN

The WST-1 assay is the most common test to assess the in vitro cytotoxicity of chemicals. Tetrazolium-based assays can, however, be affected by the interference of tested chemicals, including carbon nanotubes or Mg particles. Here, we report a new interference of Mn materials with the WST-1 assay. Endothelial cells exposed to Mn particles (Mn alone or Fe-Mn alloy from 50 to 1600 µg/ml) were severely damaged according to the WST-1 assay, but not the ATP content assay. Subsequent experiments revealed that Mn particles interfere with the reduction of the tetrazolium salt to formazan. Therefore, the WST-1 assay is not suitable to evaluate the in vitro cytotoxicity of Mn-containing materials, and luminescence-based assays such as CellTiter-Glo® appear more appropriate.


Asunto(s)
Citotoxinas/toxicidad , Células Endoteliales/efectos de los fármacos , Manganeso/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mediciones Luminiscentes/métodos , Oxidación-Reducción , Sales de Tetrazolio/química , Pruebas de Toxicidad/métodos
15.
Part Fibre Toxicol ; 17(1): 10, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32101144

RESUMEN

BACKGROUND: The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses in vitro and in vivo. RESULTS: We tested two TiO2 NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory mediators and DNA damage were measured. Large agglomerates of 17 nm TiO2 induced stronger responses than small agglomerates for glutathione depletion, IL-8 and IL-1ß increase, and DNA damage in THP-1, while no effect of agglomeration was observed with 117 nm TiO2. In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO2 suspensions and, after 3 days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence were measured. Mainly, we observed that large agglomerates of 117 nm TiO2 induced higher pulmonary responses in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates. CONCLUSION: Agglomeration of TiO2 NPs influences their toxicity/biological responses and, large agglomerates do not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs.


Asunto(s)
Daño del ADN , Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Titanio/toxicidad , Administración Oral , Animales , Líquido del Lavado Bronquioalveolar/química , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Ratones Endogámicos C57BL , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie , Células THP-1 , Titanio/química
16.
Part Fibre Toxicol ; 17(1): 6, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996255

RESUMEN

BACKGROUND: Li-ion batteries (LIB) are used in most portable electronics. Among a wide variety of materials, LiCoO2 (LCO) is one of the most used for the cathode of LIB. LCO particles induce oxidative stress in mouse lungs due to their Co content, and have a strong inflammatory potential. In this study, we assessed the mutagenic potential of LCO particles in lung cells in comparison to another particulate material used in LIB, LTO (Li4Ti5O12), which has a low inflammatory potential compared to LCO particles. RESULTS: We assessed the mutagenic potential of LCO and LTO particles in vitro by performing a cytokinesis-block micronucleus (MN) assay with rat lung epithelial cells (RLE), as well as in vivo in alveolar type II epithelial (AT-II) cells. LCO particles induced MN in vitro at non-cytotoxic concentrations and in vivo at non-inflammatory doses, indicating a primary genotoxic mechanism. LTO particles did not induce MN. Electron paramagnetic resonance and terephthalate assays showed that LCO particles produce hydroxyl radicals (•OH). Catalase inhibits this •OH production. In an alkaline comet assay with the oxidative DNA damage repair enzyme human 8-oxoguanine DNA glycosylase 1, LCO particles induced DNA strand breaks and oxidative lesions. The addition of catalase reduced the frequency of MN induced by LCO particles in vitro. CONCLUSIONS: We report the mutagenic activity of LCO particles used in LIB in vitro and in vivo. Our data support the role of Co(II) ions released from these particles in their primary genotoxic activity which includes the formation of •OH by a Fenton-like reaction, oxidative DNA lesions and strand breaks, thus leading to chromosomal breaks and the formation of MN. Documenting the genotoxic potential of the other LIB particles, especially those containing Co and/or Ni, is therefore needed to guarantee a safe and sustainable development of LIB.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Cobalto/toxicidad , Daño del ADN , Radical Hidroxilo/metabolismo , Micronúcleos con Defecto Cromosómico/inducido químicamente , Óxidos/toxicidad , Material Particulado/toxicidad , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cobalto/química , Suministros de Energía Eléctrica , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Óxidos/química , Tamaño de la Partícula , Material Particulado/química , Ratas , Ratas Wistar
17.
Part Fibre Toxicol ; 17(1): 1, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900181

RESUMEN

BACKGROUND: The regulatory definition(s) of nanomaterials (NMs) frequently uses the term 'agglomerates and aggregates' (AA) despite the paucity of evidence that AA are significantly relevant from a nanotoxicological perspective. This knowledge gap greatly affects the safety assessment and regulation of NMs, such as synthetic amorphous silica (SAS). SAS is used in a large panel of industrial applications. They are primarily produced as nano-sized particles (1-100 nm in diameter) and considered safe as they form large aggregates (> 100 nm) during the production process. So far, it is indeed believed that large aggregates represent a weaker hazard compared to their nano counterpart. Thus, we assessed the impact of SAS aggregation on in vitro cytotoxicity/biological activity to address the toxicological relevance of aggregates of different sizes. RESULTS: We used a precipitated SAS dispersed by different methods, generating 4 ad-hoc suspensions with different aggregate size distributions. Their effect on cell metabolic activity, cell viability, epithelial barrier integrity, total glutathione content and, IL-8 and IL-6 secretion were investigated after 24 h exposure in human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic cells (THP-1). We observed that the de-aggregated suspension (DE-AGGR), predominantly composed of nano-sized aggregates, induced stronger effects in all the cell lines than the aggregated suspension (AGGR). We then compared DE-AGGR with 2 suspensions fractionated from AGGR: the precipitated fraction (PREC) and the supernatant fraction (SuperN). Very large aggregates in PREC were found to be the least cytotoxic/biologically active compared to other suspensions. SuperN, which contains aggregates larger in size (> 100 nm) than in DE-AGGR but smaller than PREC, exhibited similar activity as DE-AGGR. CONCLUSION: Overall, aggregation resulted in reduced toxicological activity of SAS. However, when comparing aggregates of different sizes, it appeared that aggregates > 100 nm were not necessarily less cytotoxic than their nano-sized counterparts. This study suggests that aggregates of SAS are toxicologically relevant for the definition of NMs.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Células CACO-2 , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Glutatión/metabolismo , Humanos , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie , Suspensiones , Células THP-1
18.
J Funct Biomater ; 11(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877701

RESUMEN

Fe-based materials have increasingly been considered for the development of biodegradable cardiovascular stents. A wide range of in vitro and in vivo studies should be done to fully evaluate their biocompatibility. In this review, we summarized and analyzed the findings and the methodologies used to assess the biocompatibility of Fe materials. The majority of investigators drew conclusions about in vitro Fe toxicity based on indirect contact results. The setup applied in these tests seems to overlook the possible effects of Fe corrosion and does not allow for understanding of the complexity of released chemical forms and their possible impact on tissue. It is in particular important to ensure that test setups or interpretations of in vitro results do not hide some important mechanisms, leading to inappropriate subsequent in vivo experiments. On the other hand, the sample size of existing in vivo implantations is often limited, and effects such as local toxicity or endothelial function are not deeply scrutinized. The main advantages and limitations of in vitro design strategies applied in the development of Fe-based alloys and the correlation with in vivo studies are discussed. It is evident from this literature review that we are not yet ready to define an Fe-based material as safe or biocompatible.

19.
Part Fibre Toxicol ; 16(1): 35, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533843

RESUMEN

BACKGROUND: Li-ion batteries (LIB) are increasingly used worldwide. They are made of low solubility micrometric particles, implying a potential for inhalation toxicity in occupational settings and possibly for consumers. LiCoO2 (LCO), one of the most used cathode material, induces inflammatory and fibrotic lung responses in mice. LCO also stabilizes hypoxia-inducible factor (HIF) -1α, a factor implicated in inflammation, fibrosis and carcinogenicity. Here, we investigated the role of cobalt, nickel and HIF-1α as determinants of toxicity, and evaluated their predictive value for the lung toxicity of LIB particles in in vitro assays. RESULTS: By testing a set of 5 selected LIB particles (LCO, LiNiMnCoO2, LiNiCoAlO2) with different cobalt and nickel contents, we found a positive correlation between their in vivo lung inflammatory activity, and (i) Co and Ni particle content and their bioaccessibility and (ii) the stabilization of HIF-1α in the lung. Inhibition of HIF-1α with chetomin or PX-478 blunted the lung inflammatory response to LCO in mice. In IL-1ß deficient mice, HIF-1α was the upstream signal of the inflammatory lung response to LCO. In vitro, the level of HIF-1α stabilization induced by LIB particles in BEAS-2B cells correlated with the intensity of lung inflammation induced by the same particles in vivo. CONCLUSIONS: We conclude that HIF-1α, stabilized in lung cells by released Co and Ni ions, is a mechanism-based biomarker of lung inflammatory responses induced by LIB particles containing Co/Ni. Documenting the Co/Ni content of LIB particles, their bioaccessibility and their capacity to stabilize HIF-1α in vitro can be used to predict the lung inflammatory potential of LIB particles.


Asunto(s)
Cobalto/toxicidad , Células Epiteliales/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/efectos de los fármacos , Óxidos/toxicidad , Neumonía/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Técnicas de Cultivo de Célula , Línea Celular , Citocinas/análisis , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Exposición por Inhalación , Iones , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Neumonía/inmunología , Neumonía/patología
20.
Part Fibre Toxicol ; 16(1): 32, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31419990

RESUMEN

BACKGROUND: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. MAIN BODY: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. CONCLUSIONS: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity.


Asunto(s)
Silanos/química , Silanos/toxicidad , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Animales , Apoptosis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Química Computacional , Células Epiteliales/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Simulación de Dinámica Molecular , Propiedades de Superficie , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...