Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Proc Math Phys Eng Sci ; 476(2237): 20190769, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32518503

RESUMEN

Surface ocean biogeochemistry and photochemistry regulate ocean-atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.

3.
4.
Proc Natl Acad Sci U S A ; 113(48): 13630-13635, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849598

RESUMEN

Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Sulfatos/efectos adversos , Aerosoles/análisis , Contaminación del Aire/análisis , China , Clima , Monitoreo del Ambiente/métodos , Humanos , Londres , Nitratos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/química , Óxidos de Nitrógeno/análisis , Tamaño de la Partícula , Material Particulado/efectos adversos , Sulfatos/análisis , Óxidos de Azufre/análisis , Tiempo (Meteorología)
5.
Proc Natl Acad Sci U S A ; 110(50): 20034-9, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277830

RESUMEN

In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Metanol/análisis , Modelos Químicos , Agua de Mar/análisis , Océano Atlántico , Monitoreo del Ambiente/métodos
6.
Anal Chim Acta ; 796: 55-60, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24016583

RESUMEN

Environmental Fenton chemistry has been poorly constrained within the marine environment at a multi-component level. A simple, unique, reconfiguration of a flow-injection analytical system combined with luminol chemiluminescence allows quasi-simultaneously the measurement, using a single load-inject valve and a single photon multiplier tube, of reduced iron, Fe(II), and hydrogen peroxide. The system enables rapid, every 22s, measurements with good accuracy at environmentally relevant concentrations, less than 5% relative standard deviations on both a 5 nM Fe(II) standard and a 60 nM hydrogen peroxide standard. Limits of detection were as low as 40 pM Fe(II) and 100 pM hydrogen peroxide. The system showed excellent capability by measuring from within an organic rich seawater the photochemically induced production of Fe(II) and hydrogen peroxide and their subsequent cycling and Fenton like interactions.

7.
Ambio ; 42(1): 13-28, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23076973

RESUMEN

Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.


Asunto(s)
Atmósfera , Ecosistema , Biología Marina , Urbanización , Clima , Eutrofización , Efecto Invernadero , Contaminantes del Agua/análisis
8.
Environ Sci Technol ; 46(19): 10390-404, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22994868

RESUMEN

This paper reviews our knowledge of the measurement and modeling of mineral dust emissions to the atmosphere, its transport and deposition to the ocean, the release of iron from the dust into seawater, and the possible impact of that nutrient on marine biogeochemistry and climate. Of particular concern is our poor understanding of the mechanisms and quantities of dust deposition as well as the extent of iron solubilization from the dust once it enters the ocean. Model estimates of dust deposition in remote oceanic regions vary by more than a factor of 10. The fraction of the iron in dust that is available for use by marine phytoplankton is still highly uncertain. There is an urgent need for a long-term marine atmospheric surface measurement network, spread across all oceans. Because the southern ocean is characterized by large areas with high nitrate but low chlorophyll surface concentrations, that region is particularly sensitive to the input of dust and iron. Data from this region would be valuable, particularly at sites downwind from known dust source areas in South America, Australia, and South Africa. Coordinated field experiments involving both atmospheric and marine measurements are recommended to address the complex and interlinked processes and role of dust/Fe fertilization on marine biogeochemistry and climate.


Asunto(s)
Atmósfera , Polvo , Minerales , Océanos y Mares , Atmósfera/química , Australia , Clorofila , Polvo/análisis , Hierro/química , Biología Marina/métodos , Modelos Teóricos , Investigación/tendencias , Agua de Mar/química , Sudáfrica
9.
Anal Chim Acta ; 706(1): 128-34, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21995919

RESUMEN

The role of the ocean in the cycling of oxygenated volatile organic compounds (OVOCs) remains largely unanswered due to a paucity of datasets. We describe the method development of a membrane inlet-proton transfer reaction/mass spectrometer (MI-PTR/MS) as an efficient method of analysing methanol, acetaldehyde and acetone in seawater. Validation of the technique with water standards shows that the optimised responses are linear and reproducible. Limits of detection are 27 nM for methanol, 0.7 nM for acetaldehyde and 0.3 nM for acetone. Acetone and acetaldehyde concentrations generated by MI-PTR/MS are compared to a second, independent method based on purge and trap-gas chromatography/flame ionisation detection (P&T-GC/FID) and show excellent agreement. Chromatographic separation of isomeric species acetone and propanal permits correction to mass 59 signal generated by the PTR/MS and overcomes a known uncertainty in reporting acetone concentrations via mass spectrometry. A third bioassay technique using radiolabelled acetone further supported the result generated by this method. We present the development and optimisation of the MI-PTR/MS technique as a reliable and convenient tool for analysing seawater samples for these trace gases. We compare this method with other analytical techniques and discuss its potential use in improving the current understanding of the cycling of oceanic OVOCs.

10.
Philos Trans A Math Phys Eng Sci ; 369(1943): 1885-90, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21502164

RESUMEN

What do we need to know about greenhouse gases? Over the next 20 years, how should scientists study the role of greenhouse gases in the Earth system and the changes that are taking place? These questions were addressed at a Royal Society scientific Discussion Meeting in London on 22-23 February 2010, with over 300 participants.

11.
Proc Natl Acad Sci U S A ; 107(2): 760-5, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20080748

RESUMEN

The oceanic uptake of man-made CO(2) emissions is resulting in a measureable decrease in the pH of the surface oceans, a process which is predicted to have severe consequences for marine biological and biogeochemical processes [Caldeira K, Wickett ME (2003) Nature 425:365; The Royal Society (2005) Policy Document 12/05 (Royal Society, London)]. Here, we describe results showing how a doubling of current atmospheric CO(2) affects the production of a suite of atmospherically important marine trace gases. Two CO(2) treatments were used during a mesocosm CO(2) perturbation experiment in a Norwegian fjord (present day: approximately 380 ppmv and year 2100: approximately 750 ppmv), and phytoplankton blooms were stimulated by the addition of nutrients. Seawater trace gas concentrations were monitored over the growth and decline of the blooms, revealing that concentrations of methyl iodide and dimethylsulfide were significantly reduced under high CO(2.) Additionally, large reductions in concentrations of other iodocarbons were observed. The response of bromocarbons to high CO(2) was less clear cut. Further research is now required to understand how ocean acidification might impact on global marine trace gas fluxes and how these impacts might feed through to changes in the earth's future climate and atmospheric chemistry.


Asunto(s)
Dióxido de Carbono/análisis , Efecto Invernadero , Agua de Mar/análisis , Clorofila/análisis , Clorofila A , Clima , Cambio Climático , Gases/análisis , Hidrocarburos Yodados/análisis , Concentración de Iones de Hidrógeno , Noruega , Océanos y Mares , Fitoplancton/crecimiento & desarrollo , Compuestos de Sulfonio/análisis
12.
Philos Trans A Math Phys Eng Sci ; 365(1856): 1697-704, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17513265

RESUMEN

A wide variety of trace gases (e.g. dimethyl sulphide, organohalogens, ammonia, non-methane and oxygenated hydrocarbons, volatile oxygenated organics and nitrous oxide) are formed in marine waters by biological and photochemical processes. This leads in many, but not all, cases to supersaturation of the water relative to marine air concentrations and a net flux of trace gas to the atmosphere. Since the gases are often in their reduced forms in the water, once in the atmosphere they are subject to oxidation by photolysis or radical attack to form chemically reactive species that can affect the oxidizing capacity of the air. They can also lead to the formation of new particles or the growth of existing ones that can then contribute to both direct and indirect (via the formation of cloud condensation nuclei) aerosol effects on climate. These cycles are discussed with respect to their impacts on the chemistry of the atmosphere, climate and human health. This whole topic was the subject of an extensive review (Nightingale & Liss 2003 In Treatise in geochemistry (eds H. D. Holland & K. K. Turekian), pp. 49-81) and what will be attempted here is a brief update of the earlier paper. There is no attempt to be comprehensive either in terms of gases covered or to give a complete review of all the recent literature. It is a personal view of recent advances both from my own research group as well as significant work from others. Questions raised at the meeting 'Trace gas biogeochemistry and global change' are dealt with at appropriate places in the text (rather than at the end of the piece). Discussion of each of the gases or group of gases is given in the following separate sections.


Asunto(s)
Atmósfera , Eucariontes , Hidrocarburos , Agua de Mar , Butadienos , Hemiterpenos , Hidrocarburos Halogenados , Compuestos de Organoselenio , Pentanos , Sulfuros
13.
Environ Sci Technol ; 39(18): 7097-101, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16201634

RESUMEN

Laboratory experiments were carried out with different types of natural and artificial seawaterto study the aqueous degradation kinetics of the photolabile compounds CH2I2, CH2Brl, and CH2ClI. Irradiation studies were carried out with a 1-kW Xe lamp, optically filtered to simulate the solar spectrum at the earth's surface. Halocarbon concentrations in the samples were analyzed by purge-and-trap gas chromatography/mass spectrometry. Generally, the compounds studied were found to follow first-order removal kinetics on irradiation. However, in the case of CH2I2, deviations from first-order removal occurred after a few minutes of irradiation, probably indicating radical recombination. Photolytic lifetimes varied from 12 min for CH2I2 to 13 h for CH2ClI in natural surface seawater at 15 degrees C and an irradiation intensity corresponding to overhead sun (solar zenith angle = 0 degrees). Photolysis of CH212 in artificial and natural seawater generated CH2CII with a yield of 25-30%, suggesting that this reaction is an important source of marine CH2ClI. Dark-incubations of CH2I2 for up to one week showed that this compound does not undergo nucleophilic attack by chloride, indicating that photolysis is the main abiotic degradation mechanism of CH2I2 in seawater.


Asunto(s)
Hidrocarburos Clorados/análisis , Hidrocarburos Halogenados/análisis , Hidrocarburos Yodados/análisis , Metano/análisis , Agua de Mar/análisis , Carbono/análisis , Cloruros/análisis , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Yoduros/farmacología , Yodo/análisis , Cinética , Modelos Químicos , Fotólisis , Espectrofotometría , Temperatura , Factores de Tiempo , Xenón
14.
Science ; 297(5584): 1151-4, 2002 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-12183621

RESUMEN

Alkyl nitrates are a significant component of the "odd nitrogen" reservoir and play an important role in regulating tropospheric ozone levels in remote marine regions. Measurements of methyl and ethyl nitrate in seawater and air samples along two Atlantic Ocean transects provide the first direct evidence for an oceanic source of these compounds. Equatorial surface waters were highly supersaturated (up to 800%) in both species, with the waters in the temperate regions generally being closer to equilibrium. A simple box model calculation suggests that the equatorial source could be a major component of the local atmospheric alkyl nitrate budget.


Asunto(s)
Atmósfera/química , Nitratos/análisis , Agua de Mar/química , Contaminación del Aire , Océano Atlántico , Bacterias/metabolismo , Ecosistema , Eucariontes/metabolismo , Nitratos/química , Nitratos/metabolismo , Fotoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...