Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Med Genet A ; 185(12): 3623-3633, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34184824

RESUMEN

RASopathies are a group of disorders caused by pathogenic variants in the genes encoding Ras/mitogen-activated protein kinase pathway and share overlapping clinical and molecular features. This study is aimed to describe the clinical and molecular features of 38 patients with RASopathies. Sanger or targeted next-generation sequencing of related genes and multiplex ligation-dependent-probe amplification analysis for NF1 were performed. The pathogenic variant detection rate was 94.4%. While PTPN11 was responsible for 50% of 18 patients with Noonan syndrome (NS), SOS1, LZTR1, RIT1, and RAF1 were responsible for the remaining 27.8%, 11.1%, 5.5%, and 5.5%, respectively. Three variants in LZTR1 were novel, of which two were identified in the compound heterozygous state in a patient with intellectual disability and hypertrophic cardiomyopathy, whereas the third variant was found in the heterozygous state in a patient with pulmonary stenosis and normal intelligence. We described pyloric stenosis, knee dislocation, and cleft palate in patients with SOS1, RIT1, and RAF1 variants, respectively, that was not previously reported. We detected a PTPN11 variant in three patients from same family with NS with multiple lentigines. BRAF and MAP2K2 variants were found in eight patients with Cardiofaciocutaneous syndrome. Two variants in HRAS were detected in two Costello syndrome patients, one with a mild and the other with a severe phenotype. While large NF1 deletions were identified in four Neurofibromatosis-NS patients with intellectual disability, intelligence was normal in one patient with missense variant. In conclusion, this study provided three novel variants in LZTR1 and expanded the clinical phenotype of rare RASopathies.


Asunto(s)
Neurofibromatosis/genética , Neurofibromina 1/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-raf/genética , Factores de Transcripción/genética , Proteínas ras/genética , Adolescente , Adulto , Niño , Preescolar , Fisura del Paladar/genética , Fisura del Paladar/fisiopatología , Síndrome de Costello/genética , Síndrome de Costello/fisiopatología , Displasia Ectodérmica/genética , Displasia Ectodérmica/fisiopatología , Facies , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/fisiopatología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Humanos , Lactante , Luxación de la Rodilla/genética , Luxación de la Rodilla/fisiopatología , Masculino , Mutación , Neurofibromatosis/epidemiología , Neurofibromatosis/patología , Síndrome de Noonan/epidemiología , Síndrome de Noonan/patología , Fenotipo , Estenosis Pilórica/genética , Estenosis Pilórica/fisiopatología , Adulto Joven
2.
Eur J Hum Genet ; 29(1): 51-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32788663

RESUMEN

RASopathies are caused by variants in genes encoding components or modulators of the RAS/MAPK signaling pathway. Noonan syndrome is the most common entity among this group of disorders and is characterized by heart defects, short stature, variable developmental delay, and typical facial features. Heterozygous variants in SOS2, encoding a guanine nucleotide exchange factor for RAS, have recently been identified in patients with Noonan syndrome. The number of published cases with SOS2-related Noonan syndrome is still limited and little is known about genotype-phenotype correlations. We collected previously unpublished clinical and genotype data from 17 individuals carrying a disease-causing SOS2 variant. Most individuals had one of the previously reported dominant pathogenic variants; only four had novel changes at the established hotspots for variants that affect protein function. The overall phenotype of the 17 patients fits well into the spectrum of Noonan syndrome and is most similar to the phenotype observed in patients with SOS1-related Noonan syndrome, with ectodermal anomalies as common features and short stature and learning disabilities as relatively infrequent findings compared to the average Noonan syndrome phenotype. The spectrum of heart defects in SOS2-related Noonan syndrome was consistent with the known spectrum of cardiac anomalies in RASopathies, but no specific heart defect was particularly predominating. Notably, lymphatic anomalies were extraordinarily frequent, affecting more than half of the patients. We therefore conclude that SOS2-related Noonan syndrome is associated with a particularly high risk of lymphatic complications that may have a significant impact on morbidity and quality of life.


Asunto(s)
Sistema Linfático/patología , Síndrome de Noonan/genética , Fenotipo , Proteínas Son Of Sevenless/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Síndrome de Noonan/patología
3.
Eur J Hum Genet ; 29(3): 524-527, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33082526

RESUMEN

The RASopathies are a group of clinically and genetically heterogeneous developmental disorders caused by dysregulation of the RAS/MAPK signalling pathway. Variants in several components and regulators of this pathway have been identified as the pathogenetic cause. In 2015, missense variants in A2ML1 were reported in three unrelated families with clinical diagnosis of Noonan syndrome (NS) and a zebrafish model was presented showing heart and craniofacial defects similar to those caused by a NS-associated Shp2 variant. However, a causal role of A2ML1 variants in NS has not been confirmed since. Herein, we report on 15 individuals who underwent screening of RASopathy-associated genes and were found to carry rare variants in A2ML1, including variants previously proposed to be causative for NS. In cases where parental DNA was available, the respective A2ML1 variant was found to be inherited from an unaffected parent. Seven index patients carrying an A2ML1 variant presented with an alternate disease-causing genetic aberration. These findings underscore that current evidence is insufficient to support a causal relation between variants in A2ML1 and NS, questioning the inclusion of A2ML1 screening in diagnostic RASopathy testing.


Asunto(s)
Mutación , Síndrome de Noonan/genética , Fenotipo , alfa-Macroglobulinas/genética , Pruebas Genéticas/normas , Humanos , Síndrome de Noonan/patología
4.
Am J Hum Genet ; 107(3): 499-513, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32721402

RESUMEN

Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.


Asunto(s)
Carcinogénesis/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Trastornos del Neurodesarrollo/genética , Síndrome de Noonan/genética , Preescolar , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mutación Missense/genética , Trastornos del Neurodesarrollo/patología , Síndrome de Noonan/fisiopatología , Fenotipo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal , Secuenciación del Exoma , Proteínas ras/genética
5.
Hum Mutat ; 41(6): 1171-1182, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112654

RESUMEN

Germline PTPN11 mutations cause Noonan syndrome (NS), the most common disorder among RASopathies. PTPN11 encodes SHP2, a protein tyrosine-phosphatase controlling signaling through the RAS-MAPK and PI3K-AKT pathways. Generally, NS-causing PTPN11 mutations are missense changes destabilizing the inactive conformation of the protein or enhancing its binding to signaling partners. Here, we report on two PTPN11 variants resulting in the deletion or duplication of one of three adjacent glutamine residues (Gln255 -to-Gln257 ). While p.(Gln257dup) caused a typical NS phenotype in carriers of a first family, p.(Gln257del) had incomplete penetrance in a second family. Missense mutations involving Gln256 had previously been reported in NS. This poly-glutamine stretch is located on helix B of the PTP domain, a region involved in stabilizing SHP2 in its autoinhibited state. Molecular dynamics simulations predicted that changes affecting this motif perturb the SHP2's catalytically inactive conformation and/or substrate recognition. Biochemical data showed that duplication and deletion of Gln257 variably enhance SHP2's catalytic activity, while missense changes involving Gln256 affect substrate specificity. Expression of mutants in HEK293T cells documented their activating role on MAPK signaling, uncoupling catalytic activity and modulation of intracellular signaling. These findings further document the relevance of helix B in the regulation of SHP2's function.


Asunto(s)
Síndrome de Noonan/genética , Péptidos/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Adolescente , Niño , Preescolar , Femenino , Glutamina/genética , Células HEK293 , Humanos , Lactante , Masculino , Persona de Mediana Edad , Dominios Proteicos , Transducción de Señal
6.
Hum Mol Genet ; 29(11): 1772-1783, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31108500

RESUMEN

The RASopathies are a group of genetic syndromes caused by upregulated RAS signaling. Noonan syndrome (NS), the most common entity among the RASopathies, is characterized mainly by short stature, cardiac anomalies and distinctive facial features. Mutations in multiple RAS-MAPK pathway-related genes have been associated with NS and related phenotypes. We describe two unrelated patients presenting with hypertrophic cardiomyopathy (HCM) and dysmorphic features suggestive of NS. One of them died in the neonatal period because of cardiac failure. Targeted sequencing revealed de novo MRAS variants, c.203C > T (p.Thr68Ile) and c.67G > C (p.Gly23Arg) as causative events. MRAS has only recently been related to NS based on the observation of two unrelated affected individuals with de novo variants involving the same codons here found mutated. Gly23 and Thr68 are highly conserved residues, and the corresponding codons are known hotspots for RASopathy-associated mutations in other RAS proteins. Functional analyses documented high level of activation of MRAS mutants due to impaired GTPase activity, which was associated with constitutive plasma membrane targeting, prolonged localization in non-raft microdomains, enhanced binding to PPP1CB and SHOC2 protein, and variably increased MAPK and PI3K-AKT activation. This report provides additional evidence that a narrow spectrum of activating mutations in MRAS represents another rare cause of NS, and that MRAS has to be counted among the RASopathy genes predisposing to HCM. Moreover, our findings further emphasize the relevance of the MRAS-SHOC2-PPP1CB axis in the control of MAPK signaling, and the contribution of both MAPK and PI3K-AKT pathways in MRAS functional upregulation.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Síndrome de Noonan/genética , Proteína Fosfatasa 1/genética , Proteínas ras/genética , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/patología , Preescolar , Femenino , Mutación con Ganancia de Función/genética , Humanos , Lactante , Recién Nacido , Sistema de Señalización de MAP Quinasas/genética , Masculino , Síndrome de Noonan/complicaciones , Síndrome de Noonan/patología , Fenotipo , Fosfatidilinositol 3-Quinasas
7.
Am J Med Genet A ; 179(12): 2474-2480, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31584751

RESUMEN

Noonan syndrome-like disorder with loose anagen hair (NS/LAH) is one of the RASopathies, a group of clinically related developmental disorders caused by germline mutations in genes that encode components acting in the RAS/MAPK pathway. Among RASopathies, NS/LAH (OMIM 607721) is an extremely rare, multiple anomaly syndrome characterized by dysmorphic facial features similar to those observed in Noonan syndrome along with some distinctive ectodermal findings including easily pluckable, sparse, thin, and slow-growing hair. ADA2 deficiency (DADA2, OMIM 615688) is a monogenic autoinflammatory disorder caused by homozygous or compound heterozygous mutations in ADA2, with clinical features including recurrent fever, livedo racemosa, hepatosplenomegaly, and strokes as well as immune dysregulation. This is the first report of NS/LAH and ADA2 deficiency in the same individual. We report on a patient presenting with facial features, recurrent infections and ectodermal findings in whom both the clinical and molecular diagnoses of NS/LAH and ADA2 deficiency were established, respectively.


Asunto(s)
Adenosina Desaminasa/deficiencia , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Síndrome del Cabello Anágeno Suelto/diagnóstico , Síndrome del Cabello Anágeno Suelto/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Fenotipo , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética , Adenosina Desaminasa/genética , Alelos , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Mutación , Radiografía , Evaluación de Síntomas
8.
Am J Hum Genet ; 104(6): 1223-1232, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31130282

RESUMEN

Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.


Asunto(s)
Mutación con Ganancia de Función , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión al GTP Monoméricas/genética , Síndrome de Noonan/etiología , Adulto , Niño , Femenino , Estudios de Asociación Genética , Células HEK293 , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Síndrome de Noonan/patología , Linaje , Conformación Proteica
9.
Am J Med Genet A ; 176(2): 470-476, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29271604

RESUMEN

Noonan syndrome is characterized by typical craniofacial dysmorphism, postnatal growth retardation, congenital heart defect, and learning difficulties and belongs to the RASopathies, a group of neurodevelopmental disorders caused by germline mutations in genes encoding components of the RAS-MAPK pathway. Mutations in the RAF1 gene are associated with Noonan syndrome, with a high prevalence of hypertrophic cardiomyopathy (HCM). RAF1 mutations cluster in exons encoding the conserved region 2 (CR2), the kinase activation segment of the CR3 domain, and the C-terminus. We present two boys with Noonan syndrome and the identical de novo RAF1 missense variant c.1082G>C/p.(Gly361Ala) affecting the CR3, but located outside the kinase activation segment. The p.(Gly361Ala) mutation has been identified as a RAF1 allele conferring resistance to RAF inhibitors. This amino acid change favors a RAF1 conformation that allows for enhanced RAF dimerization and increased intrinsic kinase activity. Both patients with Noonan syndrome showed typical craniofacial dysmorphism, macrocephaly, and short stature. One individual developed HCM and was diagnosed with a disseminated oligodendroglial-like leptomeningeal tumor (DOLT) of childhood at the age of 9 years. While there is a well-established association of NS with malignant tumors, especially childhood hemato-oncological diseases, brain tumors have rarely been reported in Noonan syndrome. Our data demonstrate that mutation scanning of the entire coding region of genes associated with Noonan syndrome is mandatory not to miss rare variants located outside the known mutational hotspots.


Asunto(s)
Neoplasias Encefálicas/genética , Cardiomiopatía Hipertrófica/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-raf/genética , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Niño , Secuencia Conservada/genética , Exones/genética , Mutación de Línea Germinal , Humanos , Lactante , Masculino , Síndrome de Noonan/complicaciones , Síndrome de Noonan/fisiopatología , Secuenciación del Exoma
10.
Klin Padiatr ; 229(5): 267-273, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28806841

RESUMEN

Objective Growth hormone (GH) deficiency (GHD) is commonly treated with recombinant human GH (rhGH). Individual response to rhGH therapy varies widely and there is evidence that variations in growth-related genes, e. g. the GH receptor (GHR) gene, may impact treatment response. We aimed to identify genetic polymorphisms which could serve as predictive markers of response to rhGH therapy. Methods We conducted a genetic analysis of single nucleotide polymorphisms (SNPs) and the GHR exon 3 deletion in 101 paediatric GHD patients receiving rhGH. Patients were analysed for 13 known SNPs in 11 genes of the GH axis (SOS1, IGFR1, GAB1, LHX4, IGFBP3, GRB10, GHRHR, GHSR), growth plate (VDR, ESR1) and cell cycle (CDK4). Individual index of responsiveness (IoR) values were compared by genotype. We also analysed the potential association between the IoR and the GHR exon 3 deletion. IoRs were analysed by genotype by one-way analysis of variance and unpaired t-test. Results Variations in two SNPs, rs2888586 (SOS1) and rs2069502 (CDK4), and the GHR exon 3 deletion were significantly associated with response to rhGH treatment. Conclusions Genetic variations are potentially suitable as predictive markers of rhGH treatment response in GHD. Genetic analysis provides a starting point for individualised treatment of GHD.


Asunto(s)
Hormona del Crecimiento/deficiencia , Hormona de Crecimiento Humana/uso terapéutico , Polimorfismo Genético/genética , Receptores de Somatotropina/genética , Niño , Hormona del Crecimiento/uso terapéutico , Hormona de Crecimiento Humana/deficiencia , Hormona de Crecimiento Humana/genética , Humanos , Proteínas Recombinantes/uso terapéutico , Resultado del Tratamiento
11.
Eur J Hum Genet ; 25(7): 823-831, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28594414

RESUMEN

RASopathies comprise a group of disorders clinically characterized by short stature, heart defects, facial dysmorphism, and varying degrees of intellectual disability and cancer predisposition. They are caused by germline variants in genes encoding key components or modulators of the highly conserved RAS-MAPK signalling pathway that lead to dysregulation of cell signal transmission. Germline changes in the genes encoding members of the RAS subfamily of GTPases are rare and associated with variable phenotypes of the RASopathy spectrum, ranging from Costello syndrome (HRAS variants) to Noonan and Cardiofaciocutaneous syndromes (KRAS variants). A small number of RASopathy cases with disease-causing germline NRAS alterations have been reported. Affected individuals exhibited features fitting Noonan syndrome, and the observed germline variants differed from the typical oncogenic NRAS changes occurring as somatic events in tumours. Here we describe 19 new cases with RASopathy due to disease-causing variants in NRAS. Importantly, four of them harbored missense changes affecting Gly12, which was previously described to occur exclusively in cancer. The phenotype in our cohort was variable but well within the RASopathy spectrum. Further, one of the patients (c.35G>A; p.(Gly12Asp)) had a myeloproliferative disorder, and one subject (c.34G>C; p.(Gly12Arg)) exhibited an uncharacterized brain tumour. With this report, we expand the genotype and phenotype spectrum of RASopathy-associated germline NRAS variants and provide evidence that NRAS variants do not spare the cancer-associated mutation hotspots.


Asunto(s)
Síndrome de Costello/genética , Displasia Ectodérmica/genética , Insuficiencia de Crecimiento/genética , GTP Fosfohidrolasas/genética , Mutación de Línea Germinal , Cardiopatías Congénitas/genética , Proteínas de la Membrana/genética , Síndrome de Noonan/genética , Adolescente , Adulto , Niño , Preescolar , Síndrome de Costello/patología , Displasia Ectodérmica/patología , Facies , Insuficiencia de Crecimiento/patología , Femenino , Genotipo , Cardiopatías Congénitas/patología , Humanos , Lactante , Recién Nacido , Masculino , Mutación Missense , Síndrome de Noonan/patología , Fenotipo
12.
Hum Mutat ; 38(4): 451-459, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28074573

RESUMEN

Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu261 , Leu262 , and Arg265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu262 and Arg265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Mutación , Síndrome de Noonan/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/genética , Modelos Moleculares , Mutación Missense , Síndrome de Noonan/patología , Unión Proteica , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Dominios Homologos src
14.
Genet Med ; 18(12): 1226-1234, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27101134

RESUMEN

PURPOSE: Noonan syndrome (NS) is an autosomal-dominant disorder characterized by craniofacial dysmorphism, growth retardation, cardiac abnormalities, and learning difficulties. It belongs to the RASopathies, which are caused by germ-line mutations in genes encoding components of the RAS mitogen-activated protein kinase (MAPK) pathway. RIT1 was recently reported as a disease gene for NS, but the number of published cases is still limited. METHODS: We sequenced RIT1 in 310 mutation-negative individuals with a suspected RASopathy and prospectively in individuals who underwent genetic testing for NS. Using a standardized form, we recorded clinical features of all RIT1 mutation-positive patients. Clinical and genotype data from 36 individuals with RIT1 mutation reported previously were reviewed. RESULTS: Eleven different RIT1 missense mutations, three of which were novel, were identified in 33 subjects from 28 families; codons 57, 82, and 95 represent mutation hotspots. In relation to NS of other genetic etiologies, prenatal abnormalities, cardiovascular disease, and lymphatic abnormalities were common in individuals with RIT1 mutation, whereas short stature, intellectual problems, pectus anomalies, and ectodermal findings were less frequent. CONCLUSION: RIT1 is one of the major genes for NS. The RIT1-associated phenotype differs gradually from other NS subtypes, with a high prevalence of cardiovascular manifestations, especially hypertrophic cardiomyopathy, and lymphatic problems.Genet Med 18 12, 1226-1234.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiopatías Congénitas/genética , Síndrome de Noonan/genética , Proteínas ras/genética , Cardiomiopatía Hipertrófica/patología , Femenino , Estudios de Asociación Genética , Genotipo , Mutación de Línea Germinal , Cardiopatías Congénitas/patología , Humanos , Masculino , Síndrome de Noonan/patología , Linaje , Fenotipo
15.
Hum Mutat ; 36(11): 1080-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26173643

RESUMEN

The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.


Asunto(s)
Estudios de Asociación Genética , Mutación , Síndrome de Noonan/genética , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas Son Of Sevenless/genética , Adolescente , Adulto , Alelos , Sustitución de Aminoácidos , Niño , Análisis Mutacional de ADN , Exoma , Facies , Femenino , Genotipo , Humanos , Masculino , Modelos Moleculares , Síndrome de Noonan/diagnóstico , Fenotipo , Conformación Proteica , Proteínas Son Of Sevenless/química , Adulto Joven
16.
Hum Mutat ; 36(8): 787-96, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25952305

RESUMEN

Noonan syndrome (NS) is a relatively common developmental disorder with a pleomorphic phenotype. Mutations causing NS alter genes encoding proteins involved in the RAS-MAPK pathway. We and others identified Casitas B-lineage lymphoma proto-oncogene (CBL), which encodes an E3-ubiquitin ligase acting as a tumor suppressor in myeloid malignancies, as a disease gene underlying a condition clinically related to NS. Here, we further explored the spectrum of germline CBL mutations and their associated phenotype. CBL mutation scanning performed on 349 affected subjects with features overlapping NS and no mutation in NS genes allowed the identification of five different variants with pathological significance. Among them, two splice-site changes, one in-frame deletion, and one missense mutation affected the RING domain and/or the adjacent linker region, overlapping cancer-associated defects. A novel nonsense mutation generating a v-Cbl-like protein able to enhance signal flow through RAS was also identified. Genotype-phenotype correlation analysis performed on available records indicated that germline CBL mutations cause a variable phenotype characterized by a relatively high frequency of neurological features, predisposition to juvenile myelomonocytic leukemia, and low prevalence of cardiac defects, reduced growth, and cryptorchidism. Finally, we excluded a major contribution of two additional members of the CBL family, CBLB and CBLC, to NS and related disorders.


Asunto(s)
Variación Genética , Mutación de Línea Germinal , Proteínas Proto-Oncogénicas c-cbl/genética , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Síndrome de Noonan/genética , Síndrome de Noonan/fisiopatología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-cbl/metabolismo
17.
Am J Med Genet A ; 167A(11): 2685-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25974318

RESUMEN

The RASopathies comprise a group of clinically overlapping developmental syndromes the common pathogenetic basis of which is dysregulated signal flow through the RAS-MAPK pathway. Mutations in several components or modifiers of the pathway have been identified in Noonan syndrome and related disorders. Over the past years copy number variants (CNVs) encompassing RAS pathway genes (PTPN11, RAF1, MEK2, or SHOC2) have been reported in children with developmental syndromes. These observations raised speculations that the associated phenotypes represent RASopathies, implying that the increased or reduced expression of the respective RAS pathway component and a consecutive dysregulation of RAS pathway signalling is responsible for the clinical picture. Herein, we present two individuals and three of their relatives harboring duplications of either 3p25.2 including the RAF1 locus or 19p13.3 including the MEK2 locus. Duplication carriers exhibited variable clinical phenotypes including non-specific facial dysmorphism, short stature, and learning difficulties. A careful review of the literature supported the impression that phenotypes associated with CNVs including RAS pathway genes commonly share non-specific symptoms with RASopathies, while the characteristic "gestalt" is lacking. Considering the known molecular pathogenesis of RASopathies, it is questionable that a modest increase in the expression of a functionally normal signaling component can mimic the effects of a qualitatively abnormal (hyperactive) mutant protein. We thus argue that current empirical and biological evidence is still insufficient to allow the conclusion that an altered copy number of a RAS pathway component is indeed the mechanism that is critical for the phenotype associated with CNVs including RASopathy genes.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genes ras , Transducción de Señal/genética , Proteínas ras/genética , Adolescente , Adulto , Preescolar , Facies , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
18.
Am J Med Genet A ; 167A(2): 394-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25358541

RESUMEN

Fetal hydrops, fetal pleural effusions, hydrothorax, and chylothorax, may be associated with various genetic disorders, in particular with the Noonan, cardio-facio-cutaneous and Costello syndromes. These syndromes, collectively called RASopathies, are caused by mutations in the RAS/MAPK pathway, which is known to play a major role in lymphangiogenesis. Recently, germline mutations in the Casitas B-cell lymphoma (CBL) gene were reported in 25 patients and of these, 20 had juvenile myelomonocytic leukemia (JMML). The disorder was named "CBL syndrome" or "Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia" (NSLL). To date, prenatal abnormalities have not been reported and it is still debated whether the CBL syndrome falls into the category of a RASopathy, or represents a different entity. Here we report on three unrelated patients with CBL mutations manifesting with hydrops fetalis, fetal pleural effusions and/or congenital hydro-/chylothorax. Our findings further connect the CBL syndrome with the RASopathies.


Asunto(s)
Quilotórax/congénito , Hidropesía Fetal/genética , Mutación , Derrame Pleural/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Preescolar , Quilotórax/genética , Análisis Mutacional de ADN , Facies , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Fenotipo , Sitios de Empalme de ARN
19.
Am J Med Genet A ; 167A(2): 385-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25487361

RESUMEN

Cardiofaciocutaneous (CFC) syndrome is a rare genetic disorder belonging to the group of RASopathies. It is typically characterized by congenital heart defects, short stature, dysmorphic craniofacial features, intellectual disability, failure to thrive, and ectodermal abnormalities such as hyperkeratosis and sparse, brittle, curly hair. CFC syndrome is caused by dominant mutations in one of the four genes BRAF, MEK1, MEK2, and KRAS. Only three familial cases of CFC syndrome have been reported to date, whereas the vast majorities are sporadic cases due to de novo mutations. We report on a fourth familial case with transmission of CFC syndrome from father to son due to a novel heterozygous sequence change c.376A>G (p.N126D) in exon 3 of MEK2 gene. This observation further documents the possibility of vertical transmission of CFC syndrome, which appears to be associated with rare mutations and relatively mild intellectual disability in affected individual. The hypomorphic effect of specific mutations particularly regarding neurocognitive issues may be related to the variable fertility of affected individuals.


Asunto(s)
Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Insuficiencia de Crecimiento/diagnóstico , Insuficiencia de Crecimiento/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , MAP Quinasa Quinasa 2/genética , Mutación , Adulto , Exones , Facies , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Masculino , Fenotipo
20.
Mol Syndromol ; 5(5): 212-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25337068

RESUMEN

Noonan syndrome (NS) and related disorders, which are now summarized under the term RASopathies, are caused by germline mutations in genes encoding protein components of the Ras/mitogen-activated protein kinase pathway. In this study, we evaluated the clinical and molecular spectrum of 21 Tunisian patients, recruited by a cardiology unit, for whom RASopathy diagnosis was suspected by clinical geneticists. Overall, 19 patients had a clinical diagnosis of NS and 2 were classified as having Cardiofaciocutaneous (CFC) syndrome. In 52% (n = 11) of patients, a RASopathy has been molecularly confirmed. Mutations in PTPN11 and SOS1 genes were found in patients with diagnosis of NS and BRAF gene mutations in patients with CFC syndrome. As reported from other cohorts, mutations in exons 3 and 8 of the PTPN11 gene predominated in Tunisian NS patients. A very uncommon PTPN11 mutation c.5C>T (p.T2I), the functional consequences of which have so far remained unclear, was identified in one patient. As biased by the mode of recruitment, all patients included in this study had a congenital heart defect, with pulmonary valve stenosis being the most frequent one. Short stature and developmental abnormalities were present in mutation-positive cases. This is the first molecular study in patients from southern Tunisia with RASopathy diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...