Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 12: 1419525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145180

RESUMEN

Background: The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods: HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results: 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion: The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.


Asunto(s)
Fibroblastos , Ondas de Radio , Humanos , Fibroblastos/efectos de la radiación , Ondas de Radio/efectos adversos , Daño del ADN , Ciclo Celular/efectos de la radiación , Células Cultivadas
2.
Viruses ; 16(4)2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675961

RESUMEN

AIMS: To evaluate whether antibodies specific for the vaccinia virus (VV) are still detectable after at least 45 years from immunization. To confirm that VV-specific antibodies are endowed with the capacity to neutralize Mpox virus (MPXV) in vitro. To test a possible role of polyclonal non-specific activation in the maintenance of immunologic memory. METHODS: Sera were collected from the following groups: smallpox-vaccinated individuals with or without latent tuberculosis infection (LTBI), unvaccinated donors, and convalescent individuals after MPXV infection. Supernatant of VV- or MPXV-infected Vero cells were inactivated and used as antigens in ELISA or in Western blot (WB) analyses. An MPXV plaque reduction neutralization test (PRNT) was optimized and performed on study samples. VV- and PPD-specific memory T cells were measured by flow cytometry. RESULTS: None of the smallpox unvaccinated donors tested positive in ELISA or WB analysis and their sera were unable to neutralize MPXV in vitro. Sera from all the individuals convalescing from an MPXV infection tested positive for anti-VV or MPXV IgG with high titers and showed MPXV in vitro neutralization capacity. Sera from most of the vaccinated individuals showed IgG anti-VV and anti-MPXV at high titers. WB analyses showed that positive sera from vaccinated or convalescent individuals recognized both VV and MPXV antigens. Higher VV-specific IgG titer and specific T cells were observed in LTBI individuals. CONCLUSIONS: ELISA and WB performed using supernatant of VV- or MPXV-infected cells are suitable to identify individuals vaccinated against smallpox at more than 45 years from immunization and individuals convalescing from a recent MPXV infection. ELISA and WB results show a good correlation with PRNT. Data confirm that a smallpox vaccination induces a long-lasting memory in terms of specific IgG and that antibodies raised against VV may neutralize MPXV in vitro. Finally, higher titers of VV-specific antibodies and higher frequency of VV-specific memory T cells in LTBI individuals suggest a role of polyclonal non-specific activation in the maintenance of immunologic memory.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B , Reacciones Cruzadas , Vacuna contra Viruela , Virus Vaccinia , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Ensayo de Inmunoadsorción Enzimática , Memoria Inmunológica , Activación de Linfocitos , Pruebas de Neutralización , Orthopoxvirus/inmunología , Viruela/inmunología , Viruela/prevención & control , Vacuna contra Viruela/inmunología , Linfocitos T/inmunología , Vacunación , Virus Vaccinia/inmunología , Células Vero , Monkeypox virus/inmunología
3.
Vaccine ; 42(10): 2687-2694, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38499458

RESUMEN

Cancer patients (CPs), being immunosuppressed due to the treatment received or to the disease itself, are more susceptible to infections and their potential complications, showing therefore an increased risk of developing severe COVID-19 compared to the general population. We evaluated the immune responses to anti-SARS-CoV-2 vaccination in patients with solid tumors one year after the administration of the third dose and the effect of cancer treatment on vaccine immunogenicity was assessed. Healthy donors (HDs) were enrolled. Binding and neutralizing antibody (Ab) titers were evaluated using chemiluminescence immunoassay (CLIA) and Plaque Reduction Neutralization Test (PRNT) respectively. T-cell response was analyzed using multiparametric flow cytometry. CPs who were administered three vaccine doses showed lower Ab titers than CPs with four doses and HDs. Overall, a lower cell-mediated response was found in CPs, with a predominance of monofunctional T-cells producing TNFα. Lower Ab titers and a weaker T-cell response were observed in CPs without prior SARS-CoV-2 infection when compared to those with a previous infection. While no differences in the humoral response were found comparing immunotherapy and non-immunotherapy patients, a stronger T-cell response in CPs treated with immunotherapy was observed. Our results emphasize the need of booster doses in cancer patients to achieve a level of protection similar to that observed in healthy donors and underlines the importance of considering the treatment received to reach a proper immune response.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Neoplasias/terapia , Anticuerpos Antivirales , Anticuerpos Neutralizantes
5.
Bioelectrochemistry ; 156: 108619, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128441

RESUMEN

Herein, we developed a new waste solution-free paper-based electrochemical immunosensor for SARS-CoV-2 detection in saliva, by combining vertical and lateral flow. In detail, the device was constituted of a reservoir containing all reagents for the construction of the immunological chain onto the magnetic beads and a lateral flow holder which contained a polyester-based electrode, a magnet, and an adsorbent pad. The measurement was carried out by adding the saliva sample into the reservoir, followed by the addition of this solution in the hole present in the lateral flow holder. The successive additions of washing buffer and TMB solution in the lateral flow holder allowed the detection of N protein in saliva in the range of 0.06 to 4 µg/mL with a detection limit equal to 30 ng/mL. The analysis of several saliva samples with the sensing tool and the reference method, demonstrated the effectiveness of this device, being able to identify positive patients with high values of CT e.g. 35. This new configuration paves the way for the realization of any magnetic beads-based immunosystem without waste solution production, enlarging the application of paper-based devices.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , Saliva , SARS-CoV-2 , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Teléfono Inteligente , COVID-19/diagnóstico , Límite de Detección , Técnicas Electroquímicas/métodos , Electrodos
6.
Front Microbiol ; 14: 1272123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235426

RESUMEN

Background: In Italy the introduction of meningococcal C conjugate vaccine in 2005 has led to a significant reduction of invasive meningococcal disease (IMD) caused by Neisseria meningitidis of serogroup C (MenC). However, this serogroup is still responsible of sporadic cases, clusters and local outbreaks. The study aims to investigate the genotype and antimicrobial susceptibility profile of MenC isolates collected in Italy from 2000 to 2020. Methods: Bacterial isolates and biological samples (blood or cerebrospinal fluid) from invasive meningococcal cases are collected and characterized at the National Reference Laboratory for IMD of Istituto Superiore di Sanità. Antimicrobial susceptibility was determined by MIC Test Strip Method and interpreted according to the EUCAST breakpoints guideline. Genotypic characteristics, including multi locus sequence typing (MLST), finetype, and antimicrobial resistance target genes were performed and analyzed using the PubMLST database. Genomic comparison of core genome MLST (cgMLST) of MenC genomes was also carried out. Results: From 2000 to 2020, a total of 665 MenC isolates were investigated for antimicrobial susceptibility and 301 for genotyping. Over two decades, almost all MenC isolates resulted susceptible to antimicrobials with few isolates resulting resistant to ciprofloxacin (N = 2), penicillin G (N = 13), and rifampicin (N = 9), respectively. Molecular typing of MenC obtained from isolates or clinical specimens identified mostly the genotype C:P1.5-1,10-8:F3-6:ST-11(cc11). However, phylogenetic analysis, performed on genomes from MenC isolates, identified two sub lineages, 11.1 and 11.2, among cc11, of which the sub lineage 11.2 was the predominant. Conclusion: Wider application of the genomic analysis and monitoring of antimicrobial susceptibility represent key aspects of IMD surveillance and to monitor the continued evolution of these hyperinvasive strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA