Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Microbiol ; 7(10): 1568-1579, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36123438

RESUMEN

The ancient, ongoing coevolutionary battle between bacteria and their viruses, bacteriophages, has given rise to sophisticated immune systems including restriction-modification and CRISPR-Cas. Many additional anti-phage systems have been identified using computational approaches based on genomic co-location within defence islands, but these screens may not be exhaustive. Here we developed an experimental selection scheme agnostic to genomic context to identify defence systems in 71 diverse E. coli strains. Our results unveil 21 conserved defence systems, none of which were previously detected as enriched in defence islands. Additionally, our work indicates that intact prophages and mobile genetic elements are primary reservoirs and distributors of defence systems in E. coli, with defence systems typically carried in specific locations or hotspots. These hotspots encode dozens of additional uncharacterized defence system candidates. Our findings reveal an extended landscape of antiviral immunity in E. coli and provide an approach for mapping defence systems in other species.


Asunto(s)
Bacteriófagos , Antivirales , Bacteriófagos/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Profagos/genética
3.
Nat Microbiol ; 7(7): 1028-1040, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35725776

RESUMEN

Toxin-antitoxin (TA) systems are broadly distributed, yet poorly conserved, genetic elements whose biological functions are unclear and controversial. Some TA systems may provide bacteria with immunity to infection by their ubiquitous viral predators, bacteriophages. To identify such TA systems, we searched bioinformatically for those frequently encoded near known phage defence genes in bacterial genomes. This search identified homologues of DarTG, a recently discovered family of TA systems whose biological functions and natural activating conditions were unclear. Representatives from two different subfamilies, DarTG1 and DarTG2, strongly protected E. coli MG1655 against different phages. We demonstrate that for each system, infection with either RB69 or T5 phage, respectively, triggers release of the DarT toxin, a DNA ADP-ribosyltransferase, that then modifies viral DNA and prevents replication, thereby blocking the production of mature virions. Further, we isolated phages that have evolved to overcome DarTG defence either through mutations to their DNA polymerase or to an anti-DarT factor, gp61.2, encoded by many T-even phages. Collectively, our results indicate that phage defence may be a common function for TA systems and reveal the mechanism by which DarTG systems inhibit phage infection.


Asunto(s)
Bacteriófagos , Sistemas Toxina-Antitoxina , Adenosina Difosfato , Bacteriófagos/genética , ADN Viral/genética , Escherichia coli/genética , Sistemas Toxina-Antitoxina/genética
4.
Elife ; 102021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34279217

RESUMEN

Supercoiling impacts DNA replication, transcription, protein binding to DNA, and the three-dimensional organization of chromosomes. However, there are currently no methods to directly interrogate or map positive supercoils, so their distribution in genomes remains unknown. Here, we describe a method, GapR-seq, based on the chromatin immunoprecipitation of GapR, a bacterial protein that preferentially recognizes overtwisted DNA, for generating high-resolution maps of positive supercoiling. Applying this method to Escherichia coli and Saccharomyces cerevisiae, we find that positive supercoiling is widespread, associated with transcription, and particularly enriched between convergently oriented genes, consistent with the 'twin-domain' model of supercoiling. In yeast, we also find positive supercoils associated with centromeres, cohesin-binding sites, autonomously replicating sites, and the borders of R-loops (DNA-RNA hybrids). Our results suggest that GapR-seq is a powerful approach, likely applicable in any organism, to investigate aspects of chromosome structure and organization not accessible by Hi-C or other existing methods.


Asunto(s)
Proteínas Bacterianas/genética , Inmunoprecipitación de Cromatina , Estructuras Cromosómicas , Cromosomas/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Cromosomas Bacterianos , ADN/metabolismo , Replicación del ADN , ADN Bacteriano , Escherichia coli/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Transcripción Genética , Cohesinas
5.
Elife ; 92020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33107822

RESUMEN

Protein-protein interaction specificity is often encoded at the primary sequence level. However, the contributions of individual residues to specificity are usually poorly understood and often obscured by mutational robustness, sequence degeneracy, and epistasis. Using bacterial toxin-antitoxin systems as a model, we screened a combinatorially complete library of antitoxin variants at three key positions against two toxins. This library enabled us to measure the effect of individual substitutions on specificity in hundreds of genetic backgrounds. These distributions allow inferences about the general nature of interface residues in promoting specificity. We find that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, a wild-type antitoxin appears optimized for specificity as no substitutions improve discrimination between cognate and non-cognate partners. By comparing crystal structures of paralogous complexes, we provide a rationale for our observations. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Mesorhizobium/metabolismo , Antitoxinas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Evolución Molecular , Biblioteca de Genes , Unión Proteica
6.
Mol Cell ; 79(2): 280-292.e8, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32533919

RESUMEN

Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacterial genomes, but their functions are controversial. Although they are frequently postulated to regulate cell growth following stress, few null phenotypes for TA systems have been reported. Here, we show that TA transcript levels can increase substantially in response to stress, but toxin is not liberated. We find that the growth of an Escherichia coli strain lacking ten TA systems encoding endoribonuclease toxins is not affected following exposure to six stresses that each trigger TA transcription. Additionally, using RNA sequencing, we find no evidence of mRNA cleavage following stress. Stress-induced transcription arises from antitoxin degradation and relief of transcriptional autoregulation. Importantly, although free antitoxin is readily degraded in vivo, antitoxin bound to toxin is protected from proteolysis, preventing release of active toxin. Thus, transcription is not a reliable marker of TA activity, and TA systems do not strongly promote survival following individual stresses.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico , Sistemas Toxina-Antitoxina , Transcripción Genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/crecimiento & desarrollo , Plásmidos/genética , Proteolisis , ARN Bacteriano/metabolismo , RNA-Seq , Sistemas Toxina-Antitoxina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA