Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Neuroscience ; 549: 42-54, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38729599

RESUMEN

Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. In our study, we utilized adult male C57BL/6J mice. Lipopolysaccharide (LPS) can induce both chronic and acute depression-like symptoms in mice, a widely used model for studying depression associated with inflammation. N-acetylcysteine (NAC) exhibits anti-inflammatory and ameliorative effects on depressive symptoms. This study sought to determine whether NAC use could mitigate inflammatory depressive behavior through the enhancement of synaptic transmission, synaptic plasticity, and increasing levels of brain-derived neurotrophic factor (BDNF). In this study, we discovered that in mice modeled with depression-like symptoms, the expression levels of dendrites, BDNF, and miniature excitatory postsynaptic potential (mEPSC) in glutamatergic neurons, as well as the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPARs) GluA1 and GluA2 subunits, were significantly decreased. These findings suggest an impairment in the synaptic transmission of glutamatergic neurons. Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.


Asunto(s)
Acetilcisteína , Factor Neurotrófico Derivado del Encéfalo , Depresión , Inflamación , Lipopolisacáridos , Ratones Endogámicos C57BL , Plasticidad Neuronal , Animales , Masculino , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Depresión/prevención & control , Acetilcisteína/farmacología , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Receptores AMPA/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Transmisión Sináptica/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas/efectos de los fármacos , Neuronas/metabolismo
2.
Mol Brain ; 17(1): 8, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350944

RESUMEN

Inositol pyrophosphates are key signaling molecules that regulate diverse neurobiological processes. We previously reported that the inositol pyrophosphate 5-InsP7, generated by inositol hexakisphosphate kinase 1 (IP6K1), governs the degradation of Na+/K+-ATPase (NKA) via an autoinhibitory domain of PI3K p85α. NKA is required for maintaining electrochemical gradients for proper neuronal firing. Here we characterized the electrophysiology of IP6K1 knockout (KO) neurons to further expand upon the functions of IP6K1-regulated control of NKA stability. We found that IP6K1 KO neurons have a lower frequency of action potentials and a specific deepening of the afterhyperpolarization phase. Our results demonstrate that deleting IP6K1 suppresses neuronal excitability, which is consistent with hyperpolarization due to an enrichment of NKA. Given that impaired NKA function contributes to the pathophysiology of various neurological diseases, including hyperexcitability in epilepsy, our findings may have therapeutic implications.


Asunto(s)
Inositol , ATPasa Intercambiadora de Sodio-Potasio , Transducción de Señal , Transporte de Proteínas , Neuronas/fisiología
3.
Brain Res Bull ; 207: 110887, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280642

RESUMEN

Working memory refers to a system that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. The prefrontal cortex (PFC) and hippocampus (HPC) are major structures contributing to working memory. Accumulating evidence suggests that the HPC-PFC interactions are critical for the successful execution of working memory tasks. Nevertheless, the directional information transmission within the HPC-PFC pathway remains unclear. Using simultaneous multi-electrode recordings, we recorded local field potentials (LFPs) from the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) while the rats performed a spatial working memory task in a Y-maze. The directionality of functional interactions between mPFC and vHPC was assessed using the phase-slope index (PSI). Our findings revealed a frequency-specific oscillatory synchrony in the two regions during the spatial working memory task. Furthermore, an increased high-gamma flow from vHPC to mPFC manifested exclusively during correctly performed trials, not observed during incorrect ones. This suggests that the enhanced high-gamma flow reflects behavioral performance in working memory. Consequently, our results indicate an major role of directional frequency-specific communication in the hippocampal-frontal circuit during spatial working memory, providing a potential mechanism for working memory.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Ratas , Animales , Memoria Espacial , Corteza Prefrontal , Vías Nerviosas
4.
CNS Neurosci Ther ; 29(11): 3269-3289, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170721

RESUMEN

AIMS: Neuropathic pain after spinal cord injury (SCI) remains a common and thorny problem, influencing the life quality severely. This study aimed to elucidate the reorganization of the primary sensory cortex (S1) and the regulatory mechanism of the lateral parabrachial nucleus (lPBN) in the presence of allodynia or hyperalgesia after left spinal cord hemisection injury (LHS). METHODS: Through behavioral tests, we first identified mechanical allodynia and thermal hyperalgesia following LHS. We then applied two-photon microscopy to observe calcium activity in S1 during mechanical or thermal stimulation and long-term spontaneous calcium activity after LHS. By slice patch clamp recording, the electrophysiological characteristics of neurons in lPBN were explored. Finally, exploiting chemogenetic activation or inhibition of the neurons in lPBN, allodynia or hyperalgesia was regulated. RESULTS: The calcium activity in left S1 was increased during mechanical stimulation of right hind limb and thermal stimulation of tail, whereas in right S1 it was increased only with thermal stimulation of tail. The spontaneous calcium activity in right S1 changed more dramatically than that in left S1 after LHS. The lPBN was also activated after LHS, and exploiting chemogenetic activation or inhibition of the neurons in lPBN could induce or alleviate allodynia and hyperalgesia in central neuropathic pain. CONCLUSION: The neuronal activity changes in S1 are closely related to limb pain, which has accurate anatomical correspondence. After LHS, the spontaneously increased functional connectivity of calcium transient in left S1 is likely causing the mechanical allodynia in right hind limb and increased neuronal activity in bilateral S1 may induce thermal hyperalgesia in tail. This state of allodynia and hyperalgesia can be regulated by lPBN.


Asunto(s)
Neuralgia , Núcleos Parabraquiales , Traumatismos de la Médula Espinal , Humanos , Hiperalgesia/etiología , Calcio , Corteza Somatosensorial , Médula Espinal , Neuralgia/etiología , Neuronas/fisiología , Traumatismos de la Médula Espinal/complicaciones
5.
Clin Exp Med ; 23(6): 2041-2050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36930381

RESUMEN

As a novel anticancer therapy, chimeric antigen receptor T (CAR T) cell therapy may lead to cardiotoxic reactions. However, the exact incidence remains unclear. Our study aimed to preliminarily assess the prevalence of cardiotoxicity after CAR T cell treatment using a systematic review and meta-analysis. PubMed, Embase, Web of Science, and Cochrane databases were searched for potentially relevant studies. All types of relevant clinical studies were screened and assessed for risk bias. In most instances, random-effect models were used for data analysis, and heterogeneity between studies was evaluated. Standard quality assessment tools were used to assess quality. The study was registered with PROSPERO (CRD42022304611). Eight eligible studies comprising 3567 patients, including seven observational studies and one controlled study, were identified. The incidence of cardiovascular events was 16.7% [95% confidence interval (CI) 0.138-0.200, P < 0.01)]. Arrhythmia was the most common disorder, with an incidence of 6.5% (95% CI 0.029-0.115, P < 0.01). The occurrence of cardiotoxicity was associated with cytokine release syndrome (CRS), with a prevalence of 18.7% (95% CI 0.107-0.315, P < 0.01). Moreover, such adverse reactions were more common when CRS > 2 (OR = 0.07, 95% CI 0.02-0.29, P < 0.01). The risk of cardiotoxicity was not notably higher in patients receiving CAR T cell therapy than in those receiving traditional anticancer treatment. However, sufficient attention should be paid to this. And further evidence from large-scale clinical trials are needed.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Cardiotoxicidad/complicaciones , Cardiotoxicidad/tratamiento farmacológico , Linfocitos T , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/etiología , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674569

RESUMEN

Sesame is a promising oilseed crop that produces specific lignans of clinical importance. Hence, a molecular description of the regulatory mechanisms of lignan biosynthesis is essential for crop improvement. Here, we resequence 410 sesame accessions and identify 5.38 and 1.16 million SNPs (single nucleotide polymorphisms) and InDels, respectively. Population genomic analyses reveal that sesame has evolved a geographic pattern categorized into northern (NC), middle (MC), and southern (SC) groups, with potential origin in the southern region and subsequent introduction to the other regions. Selective sweeps analysis uncovers 120 and 75 significant selected genomic regions in MC and NC groups, respectively. By screening these genomic regions, we unveiled 184 common genes positively selected in these subpopulations for exploitation in sesame improvement. Genome-wide association study identifies 17 and 72 SNP loci for sesamin and sesamolin variation, respectively, and 11 candidate causative genes. The major pleiotropic SNPC/A locus for lignans variation is located in the exon of the gene SiNST1. Further analyses revealed that this locus was positively selected in higher lignan content sesame accessions, and the "C" allele is favorable for a higher accumulation of lignans. Overexpression of SiNST1C in sesame hairy roots significantly up-regulated the expression of SiMYB58, SiMYB209, SiMYB134, SiMYB276, and most of the monolignol biosynthetic genes. Consequently, the lignans content was significantly increased, and the lignin content was slightly increased. Our findings provide insights into lignans and lignin regulation in sesame and will facilitate molecular breeding of elite varieties and marker-traits association studies.


Asunto(s)
Lignanos , Sesamum , Sesamum/genética , Sesamum/metabolismo , Estudio de Asociación del Genoma Completo , Lignina , Análisis de Secuencia de ADN , Lignanos/metabolismo , Semillas/metabolismo
7.
Plants (Basel) ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956483

RESUMEN

In recent years, people have become increasingly interested in bioactive molecules in plants that are beneficial to human health, and melatonin (N-acetyl-5-methoxytryptamine) has attracted research attention due to its excellent performance. In this study, the content of melatonin in oilseeds was investigated. From the results, it was found that sesame is an important natural food source of melatonin intake. Furthermore, the variation in melatonin content was explored in a natural sesame population, and its contents varied from 0.04 to 298.62 ng g-1. Through a genome-wide association study (GWAS), a candidate gene SiWRKY67 was screened that regulates melatonin content in sesame. The sesame hairy root transformation system was developed and used to verify this gene, and it was found that the overexpression of SiWRKY67 could positively promote the melatonin content in the hairy roots. Our results provide not only a foundation for understanding the genetic structure of melatonin content in sesame seeds but also a reference for the marker-assisted breeding of sesame varieties with high melatonin content.

9.
BMC Plant Biol ; 22(1): 256, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35606719

RESUMEN

BACKGROUND: The adverse effects of climate change on crop production are constraining breeders to develop high-quality environmentally stable varieties. Hence, efforts are being made to identify key genes that could be targeted for enhancing crop tolerance to environmental stresses. ERF transcription factors play an important role in various abiotic stresses in plants. However, the roles of the ERF family in abiotic stresses tolerance are still largely unknown in sesame, the "queen" of oilseed crops. RESULTS: In total, 114 sesame ERF genes (SiERFs) were identified and characterized. 96.49% of the SiERFs were distributed unevenly on the 16 linkage groups of the sesame genome. The phylogenetic analysis with the Arabidopsis ERFs (AtERFs) subdivided SiERF subfamily proteins into 11 subgroups (Groups I to X; and VI-L). Genes in the same subgroup exhibited similar structure and conserved motifs. Evolutionary analysis showed that the expansion of ERF genes in sesame was mainly induced by whole-genome duplication events. Moreover, cis-acting elements analysis showed that SiERFs are mostly involved in environmental responses. Gene expression profiles analysis revealed that 59 and 26 SiERFs are highly stimulated under drought and waterlogging stress, respectively. In addition, qRT-PCR analyses indicated that most of SiERFs are also significantly up-regulated under osmotic, submerge, ABA, and ACC stresses. Among them, SiERF23 and SiERF54 were the most induced by both the abiotic stresses, suggesting their potential for targeted improvement of sesame response to multiple abiotic stresses. CONCLUSION: This study provides a comprehensive understanding of the structure, classification, evolution, and abiotic stresses response of ERF genes in sesame. Moreover, it offers valuable gene resources for functional characterization towards enhancing sesame tolerance to multiple abiotic stresses.


Asunto(s)
Arabidopsis , Sesamum , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesamum/metabolismo , Estrés Fisiológico/genética
10.
Front Nutr ; 9: 858673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295915

RESUMEN

Sesame is a worldwide oilseed crop used in the food pharmacy. Its seed phenotypes determine the seed quality values. However, a thorough assessment of seed coat metabolites is lacking, and the dark pigment in the seed coat is not well-characterized. Herein, we report the isolation of melanin by the alkali method from the black and brown sesame seeds. Physicochemical methods, including scanning electron microscopy (SEM), solubility, precipitation, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric-differential scanning calorimetry (TG-DSC), were used to characterize the sesame melanins. The results clearly showed that the isolated pigments were similar to melanin from other sources. Both melanins were heat-stable and exhibited numerous characteristic absorption peaks. Through a comprehensible LC-MS/MS-based metabolome profiles analysis of NaOH and methanol extracts of black and white sesame seeds, caffeic, protocatechuic, indole-carboxylic, homogentisic, ferulic, vanillic, and benzoic acids were identified as the potential precursors of the sesame melanin. Our findings widen our understanding of dark seeds pigmentation in sesame. Furthermore, they show that black sesame seeds are promising sources of edible melanin for food and biotechnological applications.

11.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884850

RESUMEN

SIMILAR TO RCD-ONEs (SROs) comprise a small plant-specific gene family which play important roles in regulating numerous growth and developmental processes and responses to environmental stresses. However, knowledge of SROs in sesame (Sesamum indicum L.) is limited. In this study, four SRO genes were identified in the sesame genome. Phylogenetic analysis showed that 64 SROs from 10 plant species were divided into two groups (Group I and II). Transcriptome data revealed different expression patterns of SiSROs over various tissues. Expression analysis showed that Group II SROs, especially SiSRO2b, exhibited a stronger response to various abiotic stresses and phytohormones than those in Group I, implying their crucial roles in response to environmental stimulus and hormone signals. In addition, the co-expression network and protein-protein interaction network indicated that SiSROs are associated with a wide range of stress responses. Moreover, transgenic yeast harboring SiSRO2b showed improved tolerance to salt, osmotic and oxidative stress, indicating SiSRO2b could confer multiple tolerances to transgenic yeast. Taken together, this study not only lays a foundation for further functional dissection of the SiSRO gene family, but also provides valuable gene candidates for genetic improvement of abiotic stress tolerance in sesame.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Sesamum/metabolismo , Estrés Fisiológico , Familia de Multigenes , Proteínas Nucleares/clasificación , Proteínas Nucleares/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas/genética , Elementos de Respuesta/efectos de los fármacos , Elementos de Respuesta/genética , Sesamum/genética , Transcriptoma/efectos de los fármacos
12.
J Neural Eng ; 18(4)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34130271

RESUMEN

Objective. Electrical brain stimulation has been used to ameliorate symptoms associated with neurologic and psychiatric disorders. The astrocytic activation and its interaction with neurons may contribute to the therapeutic effects of electrical stimulation. However, how the astrocytic activity is affected by electrical stimulation and its calcium signaling mechanisms remain largely unknown. This study is to explore the influence of electrical stimulus parameters on cellular calcium responses and corresponding calcium signaling mechanisms, with a focus on the heretofore largely overlooked astrocytes.Approach. Usingin vivotwo-photon microscopy in mouse somatosensory cortex, the calcium activity in neurons and astrocytes were recorded.Main results. The cathodal stimulation evoked larger responses in both neurons and astrocytes than anodal stimulation. Both neuronal and astrocytic response profiles exhibited the unimodal frequency dependency, the astrocytes prefer higher frequency stimulation than neurons. Astrocytes need longer pulse width and higher current intensity than neurons to activate. Compared to neurons, the astrocytes were not capable of keeping sustained calcium elevation during prolonged electrical stimulation. The neuronal Ca2+influx involves postsynaptic effects and direct depolarization. The Ca2+surge of astrocytes has a neuronal origin, the noradrenergic and glutamatergic signaling act synergistically to induce astrocytic activity.Significance. The astrocytic activity can be regulated by manipulating stimulus parameters and its calcium activation should be fully considered when interpreting the mechanisms of action of electrical neuromodulation. This study brings considerable benefits in the application of electrical stimulation and provides useful insights into cortical signal transduction, which contributes to the understanding of mechanisms underlying the therapeutic efficacy of electrical stimulation for neurorehabilitation applications.


Asunto(s)
Astrocitos , Señalización del Calcio , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Estimulación Eléctrica , Ratones , Neuronas/metabolismo
13.
Plant Biotechnol J ; 19(5): 1065-1079, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33369837

RESUMEN

Developing crops with improved root system is crucial in current global warming scenario. Underexploited crops are valuable reservoirs of unique genes that can be harnessed for the improvement of major crops. In this study, we performed genome-wide association studies on seven root traits in sesame (Sesamum indicum L.) and uncovered 409 significant signals, 19 quantitative trait loci containing 32 candidate genes. A peak SNP significantly associated with root number and root dry weight traits was located in the promoter of the gene named 'Big Root Biomass' (BRB), which was subsequently validated in a bi-parental population. BRB has no functional annotation and is restricted to the Lamiales order. We detected the presence of a novel motif 'AACACACAC' located in the 5'-UTR of BRB in single and duplicated copy in accessions with high and small root biomass, respectively. A strong expression level of BRB was negatively correlated with high root biomass, and this was attributed to the gene SiMYB181 which represses the activity of BRB by binding specifically to the single motif but not to the duplicated one. Curiously, the allele that enhanced BRB expression has been intensively selected by modern breeding. Overexpression of BRB in Arabidopsis modulates auxin pathway leading to reduced root biomass, improved yield parameters under normal growth conditions and increased drought stress sensitivity. Overall, BRB represents a solid gene model for improving the performance of sesame and other crops.


Asunto(s)
Sesamum , Regiones no Traducidas 5'/genética , Biomasa , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Sesamum/genética
14.
PM R ; 13(2): 171-179, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32385898

RESUMEN

OBJECTIVE: Transcranial direct current stimulation (tDCS) and functional electrical stimulation (FES) are two widely applied methods of electrical stimulation for motor recovery among stroke patients. This systematic review and meta-analysis investigated the efficacy of tDCS and FES for strength production in stroke patients. TYPE: Systematic review. LITERATURE SURVEY: Studies that explored the effects of tDCS or FES on the strength production of paralyzed muscles in stroke patients were retrieved on a comprehensive set of three databases: (1) Google Scholar, (2) PubMed, and (3) the Cochrane Database of Systematic Reviews until July 2019. METHODOLOGY: Systematic study retrieval led to the inclusion of 15 studies that reported on strength production effects after tDCS and FES interventions among stoke patients. A sham control group and randomization were used in each study. The 15 studies included 20 comparisons with sham controls, 7 of which involved tDCS and 13 of which involved FES. SYNTHESIS: Random-effects models showed that strength production was improved after tDCS (effect size [ES] = 0.52, 95% confidence interval [CI] = 0.35-0.69, P < .001, Z = 6.05) and FES (ES = 0.47, 95% CI = 0.16-0.78, P < .003, Z = 2.99). Additionally, tDCS was shown to improve strength production in the acute (ES = 0.52, 95% CI = 0.24-0.80, P < .001, Z = 3.65), subacute (ES = 0.85, 95% CI = 0.37-1.32, P < .001, Z = 3.51), but not chronic (ES = 0.06, 95% CI = -0.47-0.60, P = .82, Z = 0.23) phases of stroke recovery. Out of the 13 studies involving FES, 12 investigated strength production in the chronic phase and one investigated in the acute phase, showing a positive effect in these two stages. CONCLUSIONS: The results of the meta-analysis showed that tDCS and FES successfully improved strength production in stroke patients.


Asunto(s)
Corteza Motora , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Estimulación Eléctrica , Humanos , Músculos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia
15.
Data Brief ; 32: 106096, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32817868

RESUMEN

Soil salinity is a major abiotic factor affecting the growth and development of important crops such as sesame (Sesamum indicum L.). To understand the molecular mechanisms of this oilseed crop in response to salt stress, we examined the transcriptome and proteome profiles of two sesame varieties, with contrasting tolerances to salinity. Here, RNA sequencing and quantitative proteomic analyses of 30 samples from salt-tolerant and -sensitive sesame seedlings under salt stress were carried out. These data can be used for differential gene expression and protein accumulation analyses, based on a genetic aberration or phenotypic differences in sesame responses to salt stress. Our dataset provides an extensive resource for understanding the molecular mechanisms underlying the adaptation of sesame to salt stress, and may constitute useful a resource for increasing the tolerance of major crop plants to raised salinity levels in soils.

16.
Exp Brain Res ; 238(6): 1479-1488, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32424694

RESUMEN

Epilepsy is a common neurological disorder characterized by recurrent epileptic seizures. The cause of most cases of epilepsy is unknown. Although changes of calcium events in a single brain region during seizures have been reported before, there have been few studies on relations between calcium events of two different brain regions and epileptic behaviors in freely moving mice. To analyze calcium events simultaneously recorded in hippocampal CA1 (CA1) and primary motor cortex M1 (M1), and to explore their relations to various epileptic behaviors in freely moving epileptic models. Epileptic models were induced by Kainic acid (KA), a direct agonist of glutamatergic receptor, on adult male C57/BL6J mice. Calcium events of neurons and glia in CA1 and M1 labeled by a calcium indicator dye were recorded simultaneously with a multi-channel fiber photometry system. Three typical types of calcium events associated with KA-induced seizures were observed, including calcium baseline-rising, cortical spreading depression (CSD) and calcium flashing with a steady rate. Our results showed that the calcium baseline-rising occurred in CA1 was synchronized with that in M1, but the CSD waves were not. However, synchronization of calcium flashing in the two areas was uncertain, because it was only detected in CA1. We also observed that different calcium events happened with different epileptic behaviors. Baseline-rising events were accompanied by clonus of forelimbs or trembling, CSD waves were closely related to head movements (15 out of 18, 6 mice). Calcium flashing occurred definitely with drastic convulsive motor seizures (CMS, 6 mice). The results prove that the synchronization of calcium event exists in CA1 and M1, and different calcium events are related with different seizure behaviors. Our results suggest that calcium events involve in the synchronization of neural network and behaviors in epilepsy.


Asunto(s)
Región CA1 Hipocampal , Calcio/metabolismo , Depresión de Propagación Cortical/fisiología , Epilepsia , Corteza Motora , Red Nerviosa , Animales , Conducta Animal/fisiología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Fotometría
17.
Aging (Albany NY) ; 12(5): 4299-4321, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32155129

RESUMEN

Brain ischemia results from cardiac arrest, stroke or head trauma. The structural basis of rescuing the synaptic impairment and cortical dysfunctions induced in the stage of ischemic-reperfusion can occur if therapeutic interventions are applied in time, but the functional basis for this resilience remains elusive. Here, we explore the changes in cortical activity and a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA1 subunit in spine (sGluA1) after transient ischemia-reperfusion in vivo for 28 days. Using in vivo two-photon microscopy in the mouse somatosensory cortex, we found that the average frequency of Ca2+ transients in the spine (there was an unusual synchrony) was higher after 15 min of ischemia-reperfusion. In addition, the transient ischemia-reperfusion caused a reflective enhancement of AMPARs, which eventually restored to normal. The cortical hyperactivity (Ca2+ transients) and the increase in AMPARs were successfully blocked by an NMDA receptor antagonist. Thus, the increase of AMPARs, cortical hyperactivity and the unusual synchrony might be the reason for reperfusion injury after short-term transient ischemia.


Asunto(s)
Espinas Dendríticas/metabolismo , Receptores AMPA/metabolismo , Daño por Reperfusión/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Señalización del Calcio/fisiología , Ratones , Neuronas/metabolismo , Transporte de Proteínas/fisiología
18.
AoB Plants ; 12(1): plz081, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32099638

RESUMEN

An increasing number of candidate genes related to abiotic stress tolerance are being discovered and proposed to improve the existing cultivars of the high oil-bearing crop sesame (Sesamum indicum L.). However, the in planta functional validation of these genes is remarkably lacking. In this study, we cloned a novel sesame R2-R3 MYB gene SiMYB75 which is strongly induced by drought, sodium chloride (NaCl), abscisic acid (ABA) and mannitol. SiMYB75 is expressed in various sesame tissues, especially in root and its protein is predicted to be located in the nucleus. Ectopic over-expression of SiMYB75 in Arabidopsis notably promoted root growth and improved plant tolerance to drought, NaCl and mannitol treatments. Furthermore, SiMYB75 over-expressing lines accumulated higher content of ABA than wild-type plants under stresses and also increased sensitivity to ABA. Physiological analyses revealed that SiMYB75 confers abiotic stress tolerance by promoting stomatal closure to reduce water loss; inducing a strong reactive oxygen species scavenging activity to alleviate cell damage and apoptosis; and also, up-regulating the expression levels of various stress-marker genes in the ABA-dependent pathways. Our data suggested that SiMYB75 positively modulates drought, salt and osmotic stresses responses through ABA-mediated pathways. Thus, SiMYB75 could be a promising candidate gene for the improvement of abiotic stress tolerance in crop species including sesame.

19.
BMC Genomics ; 20(1): 748, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619177

RESUMEN

BACKGROUND: The homeodomain-leucine zipper (HD-Zip) gene family is one of the plant-specific transcription factor families, involved in plant development, growth, and in the response to diverse stresses. However, comprehensive analysis of the HD-Zip genes, especially those involved in response to drought and salinity stresses is lacking in sesame (Sesamum indicum L.), an important oil crop in tropical and subtropical areas. RESULTS: In this study, 45 HD-Zip genes were identified in sesame, and denominated as SiHDZ01-SiHDZ45. Members of SiHDZ family were classified into four groups (HD-Zip I-IV) based on the phylogenetic relationship of Arabidopsis HD-Zip proteins, which was further supported by the analysis of their conserved motifs and gene structures. Expression analyses of SiHDZ genes based on transcriptome data showed that the expression patterns of these genes were varied in different tissues. Additionally, we showed that at least 75% of the SiHDZ genes were differentially expressed in responses to drought and salinity treatments, and highlighted the important role of HD-Zip I and II genes in stress responses in sesame. CONCLUSIONS: This study provides important information for functional characterization of stress-responsive HD-Zip genes and may contribute to the better understanding of the molecular basis of stress tolerance in sesame.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , Sesamum/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Proteínas de Homeodominio/química , Leucina Zippers , Familia de Multigenes , Especificidad de Órganos , Presión Osmótica , Filogenia , Proteínas de Plantas/química , Salinidad , Sesamum/clasificación , Sesamum/fisiología , Factores de Transcripción/química
20.
Front Cell Neurosci ; 13: 400, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555097

RESUMEN

Anodal-transcranial pulsed current stimulation (a-tPCS) has been used in human studies to modulate cortical excitability or improve behavioral performance in recent years. Multiple studies show crucial roles of astrocytes in cortical plasticity. The calcium activity in astrocytes could regulate synaptic transmission and synaptic plasticity. Whether the astrocytic activity is involved in a-tPCS-induced cortical plasticity is presently unknown. The purpose of this study is to investigate the calcium responses in neurons and astrocytes evoked by a-tPCS with different current intensities, and thereby provides some indication of the mechanisms underlying a-tPCS-induced cortical plasticity. Two-photon calcium imaging was used to record the calcium responses of neurons and astrocytes in mouse somatosensory cortex. Local field potential (LFP) evoked by sensory stimulation was used to assess the effects of a-tPCS on plasticity. We found that long-duration a-tPCS with high-intensity current could evoke large-amplitude calcium responses in both neurons and astrocytes, whereas long-duration a-tPCS with low-intensity current evoked large-amplitude calcium responses only in astrocytes. The astrocytic Ca2+ elevations are driven by noradrenergic-dependent activation of the alpha-1 adrenergic receptors (A1ARs), while the intense Ca2+ responses of neurons are driven by action potentials. LFP recordings demonstrated that low-intensity a-tPCS led to enhancement of cortical excitability while high-intensity a-tPCS resulted in diminution of cortical excitability. The results provide some evidence that the enhancement of a-tPCS-induced cortical excitability might be partly associated with calcium elevation in astrocytes, whereas the diminution of a-tPCS-induced cortical excitability might be caused by excessive calcium activity in neurons. These findings indicate that the appropriate current intensity should be used in the application of a-tPCS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...