Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 11: 486, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547409

RESUMEN

Host-plant volatiles play vital roles for insects to locate foraging, mating, and oviposition sites in the environment. As one of the devastating invasive forestry pests, Hyphantria cunea causes a great annual loss in China, and understanding its chemical ecology is an important task. The current research was done in terms of chemical analysis, electrophysiology, and behavioral assays on H. cunea to assess its olfactory reception toward host-plant volatiles. A screen of possible common host volatiles was done, targeting on five favored hosts of H. cunea, harvesting six potential bioactive compounds from a total of 78 odorant components. Six types of antennal sensilla were investigated on their distributions on the antennae, and sexual dimorphism was described. H. cunea showed responses to all selected host-related volatiles in electroantennogram tests, and linalyl butyrate elicited the strongest responses. Furthermore, mating rates in adult pairs that are exposed to dibutyl phthalate and phytol have been significantly increased, while oviposition rates and female fecundity were not influenced. The results of the current study provide initial evidence showing that universal host-derived volatile cues are essential for H. cunea moth in terms of mating, which can also provide insights into the development of botanical attractants.

2.
Insect Sci ; 27(6): 1276-1284, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31769205

RESUMEN

MEAM1 (Middle East-Asia Minor 1, "B" biotype) and MED (Mediterranean, "Q" biotype) are the two most destructive cryptic species of the Bemisia tabaci complex on the planet. Our previous studies have shown that MEAM1 outcompetes MED on cabbage; the underlying mechanism is unknown. In the Brassicaceae family, the glucosinolate-myrosinase defense system plays a crucial role in deterring feeding, inhibiting growth, and causing acute toxicity against a wide range of generalist herbivores. In the present study, we first compared the survival of MEAM1 and MED exposed to sinigrin (a glucosinolate) and myrosinase (an enzyme that degrades glucosinolates); we found that survival of both species was high in response to sinigrin alone but was near zero in response to sinigrin + myrosinase. We then used electropenetrography (electrical penetration graphs, EPG) to assess the feeding behaviors of MEAM1 and MED whiteflies on cabbage. The EPG results revealed that the mean duration of each potential drop (pd, indicating an intracellular puncture) was substantially longer for MED than MEAM1 on cabbage, indicating that the exposure to the toxic hydrolysates of glucosinolate and myrosinase is greater for MED than for MEAM1. We therefore conclude that differences in penetrating behaviors may help explain the different effects of cabbage on MEAM1 and MED whitefly species.


Asunto(s)
Cadena Alimentaria , Glucosinolatos/farmacología , Glicósido Hidrolasas/farmacología , Hemípteros/fisiología , Herbivoria , Animales , Brassica/crecimiento & desarrollo , Electrofisiología , Conducta Alimentaria , Especificidad de la Especie
3.
J Econ Entomol ; 108(1): 11-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26470098

RESUMEN

Pathogen-mediated interactions between insect vectors and their host plants can affect herbivore fitness and the epidemiology of plant diseases. While the role of plant quality and defense in mediating these tripartite interactions has been recognized, there are many ecologically and economically important cases where the nature of the interaction has yet to be characterized. The Bemisia tabaci (Gennadius) cryptic species Mediterranean (MED) is an important vector of tomato yellow leaf curl virus (TYLCV), and performs better on virus-infected tomato than on uninfected controls. We assessed the impact of TYLCV infection on plant quality and defense, and the direct impact of TYLCV infection on MED feeding. We found that although TYLCV infection has a minimal direct impact on MED, the virus alters the nutritional content of leaf tissue and phloem sap in a manner beneficial to MED. TYLCV infection also suppresses herbivore-induced production of plant defensive enzymes and callose deposition. The strongly positive net effect on TYLCV on MED is consistent with previously reported patterns of whitefly behavior and performance, and provides a foundation for further exploration of the molecular mechanisms responsible for these effects and the evolutionary processes that shape them.


Asunto(s)
Begomovirus/fisiología , Hemípteros/fisiología , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología , Solanum lycopersicum/virología , Animales , Femenino , Hemípteros/virología , Insectos Vectores/virología
4.
PLoS One ; 8(11): e79997, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24302995

RESUMEN

BACKGROUND: Even though introductions of exotic species provide ready-made experiments of rapid evolution, few studies have examined the genetic structure of an exotic species shortly after its initial introduction and subsequent spread. To determine the genetic structure of its populations during the initial introduction, we investigated the invasive sweet potato whitefly (Bemisia tabaci Q, commonly known as B. tabaci biotype Q) in China, which was introduced in approximately 2003. A total of 619 B. tabaci Q individuals in 20 provinces throughout China were collected and analyzed using five microsatellite loci. RESULTS: The introduced populations of B. tabaci Q in China represent eight genetic clusters with different geographic distributions. The populations in Yunnan Province, where B. tabaci Q was first detected, are genetically different from the other populations in China. CONCLUSION: The introduced populations of B. tabaci Q in China have high spatial genetic heterogeneity. Additional research is required to determine whether the heterogeneity results from multiple introductions, rapid evolution following one or few introductions, or some combination of multiple introductions and rapid evolution. The heterogeneity, however, is inconsistent with a single introduction at Yunnan Province, where B. tabaci Q was first detected, followed by spread.


Asunto(s)
Heterogeneidad Genética , Hemípteros/genética , Especies Introducidas , Análisis Espacial , Animales , China , Análisis por Conglomerados , Variación Genética , Geografía , Dinámica Poblacional
5.
Pestic Biochem Physiol ; 107(3): 343-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24267696

RESUMEN

The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64).


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hemípteros/efectos de los fármacos , Hemípteros/metabolismo , Imidazoles/farmacología , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Nitrocompuestos/farmacología , Animales , China , Sistema Enzimático del Citocromo P-450/genética , Resistencia a Medicamentos , Hemípteros/genética , Proteínas de Insectos/genética , Neonicotinoides
6.
Environ Entomol ; 42(1): 74-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23339787

RESUMEN

The impact of symbionts on their hosts depends on their infection density. In the current study, we investigated the effects of host plant and insecticide resistance on the relative amount of symbionts Portiera, Hamiltonella, Rickettsia, and Cardinium in the whitefly Bemisia tabaci (Gennadius) B biotype. The relative amount of symbionts in three host plant-adapted subpopulations (cucumber, Cucumis sativus L.; cabbage, Brassica oleracea L.; and cotton, Gossypium herbaceum L.) with the same genetic background and insecticide (thiamethoxam)-resistant and -susceptible subpopulations with the same genetic background were measured by quantitative polymerase chain reaction. The results showed that the cucumber population harbored more Portiera than the cabbage and cotton populations, the cabbage population harbored more Hamiltonella than the cucumber population, Hamiltonella amount did not statistically differ between the cotton and cucumber or the cotton and cabbage populations, and the cabbage population harbored more Rickettsia and Cardinium than the cucumber and cotton populations. In addition, the thiamethoxam-susceptible population harbored more Portiera and Hamiltonella than the thiamethoxam-resistant population, whereas the thiamethoxam-resistant population harbored more Rickettsia than the thiamethoxam-susceptible population. These results indicated that relative amounts of symbionts were affected significantly by host plant-adaption and insecticide resistance, and the response to host plant and insecticide differed among the symbionts.


Asunto(s)
Adaptación Biológica , Hemípteros , Insecticidas , Nitrocompuestos , Oxazinas , Simbiosis , Tiazoles , Animales , Femenino , Resistencia a los Insecticidas , Neonicotinoides , Tiametoxam
7.
J Insect Sci ; 12: 46, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22957505

RESUMEN

Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes de Insecto , Hemípteros/genética , Insecticidas/farmacología , Nitrocompuestos/farmacología , Oxazinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Tiazoles/farmacología , Animales , Etiquetas de Secuencia Expresada , Hemípteros/efectos de los fármacos , Resistencia a los Insecticidas , Larva/efectos de los fármacos , Larva/genética , Masculino , Neonicotinoides , Óvulo/efectos de los fármacos , Tiametoxam
8.
PLoS One ; 7(4): e35181, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558125

RESUMEN

BACKGROUND: Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis.


Asunto(s)
Bacterias/genética , Hemípteros/genética , Hemípteros/microbiología , Resistencia a los Insecticidas/genética , Simbiosis , Transcriptoma/genética , Animales , Secuencia de Bases , Biología Computacional , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Biblioteca de Genes , Interacciones Huésped-Patógeno , Metagenómica/métodos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Neonicotinoides , Nitrocompuestos/toxicidad , Oxazinas/toxicidad , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN/métodos , Tiametoxam , Tiazoles/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...