Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Am Coll Surg ; 238(1): 32-40, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870240

RESUMEN

BACKGROUND: We have previously shown that partial REBOA (pREBOA) deployment in the thoracic aorta is safe for 2 to 4 hours, but it is unclear whether the distal blood flow after partial aortic occlusion would lead to ongoing hemorrhage. The objective of this study was to evaluate the hemostatic efficacy of pREBOA in a model of uncontrolled vascular injury. STUDY DESIGN: Female Yorkshire swine (n = 10, 40 to 45 kg) were anesthetized and instrumented. A through-and-through injury was created in the common iliac artery. The animals were randomly assigned to: (1) pREBOA-PRO deployment after 3 minutes and (2) control. Both groups were given normal saline resuscitation for hypotension. The pREBOA was adjusted to partial occlusion (distal mean arterial pressure of 30 mmHg), and then left without titration for 2 hours. Then, fresh frozen plasma was transfused and the vessel repaired. The balloon was deflated and the animals were monitored for 2 hours. In the critical care period, 2 L of normal saline was infused, norepinephrine was given for mean arterial pressure ≤55, and electrolytes and acidosis were corrected. Organs were examined for gross and histologic evidence of ischemic injuries. The primary endpoint was post-inflation blood loss. RESULTS: All the pREBOA animals survived until the end, whereas control animals had a mean survival time of 38.2 minutes (p < 0.05). The pREBOA group showed significantly less bleeding after balloon deployment (93.8 vs 1,980.0 mL, p < 0.05), and had appropriate lactate clearance, with minimal histologic distal organ ischemia. CONCLUSIONS: Partial aortic occlusion with the newly designed balloon can achieve the desired balance between effective hemorrhage control and adequate distal flow, without a need for ongoing balloon titration.


Asunto(s)
Oclusión con Balón , Procedimientos Endovasculares , Choque Hemorrágico , Lesiones del Sistema Vascular , Porcinos , Femenino , Animales , Solución Salina , Modelos Animales de Enfermedad , Hemorragia/etiología , Hemorragia/terapia , Resucitación
2.
Front Microbiol ; 14: 1293363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033593

RESUMEN

Background: The increase in antibiotic resistance of bacteria has become a major concern in clinical treatment. Silver nanoparticles (AgNPs) have significant antibacterial effects against Streptococcus suis. Therefore, this study aimed to investigate the antibacterial activity and mechanism of action of AgNPs against multidrug-resistant S. suis. Methods: The effect of AgNPs on the morphology of multidrug-resistant S. suis was observed using scanning electron microscopy (SEM). Differentially expressed proteins were analyzed by iTRAQ quantitative proteomics, and the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining. Results: SEM showed that AgNPs disrupted the normal morphology of multidrug-resistant S. suis and the integrity of the biofilm structure. Quantitative proteomic analysis revealed that a large number of cell wall synthesis-related proteins, such as penicillin-binding protein and some cell cycle proteins, such as the cell division protein FtsZ and chromosomal replication initiator protein DnaA, were downregulated after treatment with 25 µg/mL AgNPs. Significant changes were also observed in the expression of the antioxidant enzymes glutathione reductase, alkyl hydroperoxides-like protein, α/ß superfamily hydrolases/acyltransferases, and glutathione disulfide reductases. ROS production in S. suis positively correlated with AgNP concentration. Conclusion: The potential antibacterial mechanism of AgNPs may involve disrupting the normal morphology of bacteria by inhibiting the synthesis of cell wall peptidoglycans and inhibiting the growth of bacteria by inhibiting the cell division protein FtsZ and Chromosomal replication initiator protein DnaA. High oxidative stress may be a significant cause of bacterial death. The potential mechanism by which AgNPs inhibit S. suis biofilm formation may involve affecting bacterial adhesion and interfering with the quorum sensing system.

3.
J Trauma Acute Care Surg ; 95(2S Suppl 1): S129-S136, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184494

RESUMEN

BACKGROUND: The clinical usage of the resuscitative endovascular balloon occlusion of the aorta (REBOA) is limited by distal ischemia resulting from complete aortic occlusion. We hypothesized that animals would physiologically tolerate the prolonged partial occlusion using the novel partially occluding REBOA (pREBOA) with survivable downstream injuries. METHODS: This study used the pREBOA-PRO catheter in a previously established swine model. Female Yorkshire swine (n = 10) underwent a volume-controlled hemorrhage (40% estimated blood). After 1 hour of shock (mean arterial pressure, 28-32 mm Hg), animals were randomized to partial occlusion for either 2 hours or 4 hours. The pREBOA was inflated in zone 1 to achieve partial occlusion defined as a distal systolic blood pressure (SBP) of 20 ± 2 mm Hg. The balloon was deflated at the end of the occlusion period, and animals were resuscitated for 2 hours. Tissues were examined for gross and histologic injury. The primary endpoint was histologic organ injury, and secondary end points were hemodynamic variables and degree of distal organ ischemia. RESULTS: All animals survived to the endpoint. Both groups had similar proximal and distal SBP at baseline, with a divergence of pressures ranging from 55 mm Hg to 90 mm Hg on inflation. The lactate levels increased throughout the occlusion and decreased approximately 40% during the observation period. More animals required norepinephrine and fluid in the 4-hour group compared with the 2-hour group. There was no gross small bowel ischemia noted in the 2-hour animals. The 4-hour group had surgically resectable patchy short segment ischemia. Neither group showed nonsurvivable organ ischemia on pathology or laboratory values. CONCLUSION: This is the first study showing that the zone 1 aorta can be occluded for over 4 hours using a new pREBOA device without need for balloon titration. In conclusion, simple changes in balloon design offer reliable partial aortic occlusion, with potentially survivable and surgically manageable downstream injuries.


Asunto(s)
Oclusión con Balón , Procedimientos Endovasculares , Choque Hemorrágico , Animales , Femenino , Aorta/cirugía , Oclusión con Balón/métodos , Presión Sanguínea , Modelos Animales de Enfermedad , Procedimientos Endovasculares/métodos , Hemodinámica/fisiología , Hemorragia , Resucitación/métodos , Choque Hemorrágico/terapia , Porcinos
4.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050501

RESUMEN

Visible light communication (VLC) is one of the key technologies for the sixth generation (6G) to support the connection and throughput of the Industrial Internet of Things (IIoT). Furthermore, VLC channel modeling is the foundation for designing efficient and robust VLC systems. In this paper, the ray-tracing simulation method is adopted to investigate the VLC channel in IIoT scenarios. The main contributions of this paper are divided into three aspects. Firstly, based on the simulated data, large-scale fading and multipath-related characteristics, including the channel impulse response (CIR), optical path loss (OPL), delay spread (DS), and angular spread (AS), are analyzed and modeled through the distance-dependent and statistical distribution models. The modeling results indicate that the channel characteristics under the single transmitter (TX) are proportional to the propagation distance. It is also found that the degree of time domain and spatial domain dispersion is higher than that in the typical rooms (conference room and corridor). Secondly, the density of surrounding objects and the effects of user heights on these channel characteristics are also investigated. Through the analysis, it can be observed that the denser objects can contribute to the smaller OPL and the larger RMS DS under the single TX case. Furthermore, due to the blocking effect of surrounding objects, the larger OPL and the smaller RMS DS can be observed at the receiver with a low height. Thirdly, due to the distance dependence of the channel characteristics and large time-domain dispersion, the link adaption method is further proposed to optimize the multipath interference problem. This method combines a luminary adaptive selection and delay adaption technique. Then, the performance of the link adaption method is verified from four aspects through simulation, including the signal-to-noise (SNR), the RMS DS, the CIRs, and the bit-error rate (BER) of a direct-current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) system. The verification results indicate that our proposed method has a significant optimization for multipath interference.

5.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361594

RESUMEN

In spite of increasing use in the food industry, high relative levels of palmitic acid (C16:0) in cottonseed oil imposes harmful effects on human health when overconsumed in the diet. The limited understanding of the mechanism in controlling fatty acid composition has become a significant obstacle for breeding novel cotton varieties with high-quality oil. Fatty acyl-acyl carrier protein (ACP) thioesterase B (FatBs) are a group of enzymes which prefer to hydrolyze the thioester bond from saturated acyl-ACPs, thus playing key roles in controlling the accumulation of saturated fatty acids. However, FatB members and their roles in cotton are largely unknown. In this study, a genome-wide characterization of FatB members was performed in allotetraploid upland cotton, aiming to explore the GhFatBs responsible for high accumulations of C16:0 in cotton seeds. A total of 14 GhFatB genes with uneven distribution on chromosomes were identified from an upland cotton genome and grouped into seven subfamilies through phylogenetic analysis. The six key amino acid residues (Ala, Trys, Ile, Met, Arg and Try) responsible for substrate preference were identified in the N-terminal acyl binding pocket of GhFatBs. RNA-seq and qRT-PCR analysis revealed that the expression profiles of GhFatB genes varied in multiple cotton tissues, with eight GhFatBs (GhA/D-FatB3, GhA/D-FatB4, GhA/D-FatB5, and GhA/D-FatB7) having high expression levels in developing seeds. In particular, expression patterns of GhA-FatB3 and GhD-FatB4 were positively correlated with the dynamic accumulation of C16:0 during cotton seed development. Furthermore, heterologous overexpression assay of either GhA-FatB3 or GhD-FatB4 demonstrated that these two GhFatBs had a high substrate preference to 16:0-ACP, thus contributing greatly to the enrichment of palmitic acid in the tested tissues. Taken together, these findings increase our understanding on fatty acid accumulation and regulation mechanisms in plant seeds. GhFatBs, especially GhA-FatB3 and GhD-FatB4, could be molecular targets for genetic modification to reduce palmitic acid content or to optimize fatty acid profiles in cotton and other oil crops required for the sustainable production of healthy edible oil.


Asunto(s)
Aceite de Semillas de Algodón , Ácido Palmítico , Humanos , Aceite de Semillas de Algodón/análisis , Aceite de Semillas de Algodón/metabolismo , Ácido Palmítico/metabolismo , Filogenia , Fitomejoramiento , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Semillas/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Plantas/metabolismo
6.
Front Oncol ; 12: 1034167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276111

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2021.657029.].

7.
J Trauma Acute Care Surg ; 93(5): 613-619, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838363

RESUMEN

BACKGROUND: MG53, a member of the tripartite motif (TRIM) protein family, plays an essential role in cell membrane repair and promotes cell survival. Recent studies show that systemic delivery of recombinant human MG53 (rhMG53) protein markedly attenuates tissue injury/inflammation, and facilitates healing. This study was performed to test whether intravenous administration of rhMG53 protein would decrease the lesion size in a clinically relevant large animal model of traumatic brain injury (TBI). METHOD: Yorkshire swine (40-45 kg; n = 5/group) were subjected to controlled cortical impact TBI and randomized to either: (1) rhMG53 protein (2 mg/kg, intravenous) or (2) normal saline control. Hemodynamics, intracranial pressure, and brain oxygenation were monitored for 7 hours. Brains were then harvested and sectioned into 5-mm slices and stained with 2,3,5-triphenyltetrazolium chloride to quantify the lesion size. Blood-brain barrier permeability of MG53 in the brain was determined by Western blot and immunohistochemistry. Bcl-2 and phospho-GSK ß levels were measured as makers of prosurvival pathway activation. RESULTS: Hemodynamic parameters were similar in both groups, but the lesion size in the rhMG53-treated group (2,517 ± 525.4 mm 3 ) was significantly ( p < 0.05) smaller than the control group (3,646 ± 740.1 mm 3 ). In the treated animals, rhMG53 was detected in the regions surrounding the TBI, but it was absent in the saline-treated control animals. Bcl-2 and phospho-GSK ß levels in the brains were upregulated in the rhMG53-treated animals. CONCLUSION: Intravenously administered rhMG53 localizes to the injured areas of the brain, with the treated animals demonstrating a significant attenuation in the brain lesion size following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Humanos , Animales , Porcinos , Modelos Animales de Enfermedad , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Encéfalo , Presión Intracraneal , Inflamación , Proteínas Proto-Oncogénicas c-bcl-2
8.
Sci Total Environ ; 847: 157619, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901877

RESUMEN

As an emerging pollutant, benzalkonium chlorides (BACs) potentially enriched in waste activated sludge (WAS). However, the microbial response mechanism under chronic effects of BACs on acidogenesis and methanogenesis in anaerobic digestion (AD) has not been clearly disclosed. This study investigated the AD (by-)products and microbial evolution under low to high BACs concentrations from bioreactor startup to steady running. It was found that BACs can lead to an increase of WAS hydrolysis and fermentation, but a disturbance to acidogenic bacteria also occurred at low BACs concentration. A noticeable inhibition to methanogenesis occurred when BAC concentration was up to 15 mg/g TSS. Metagenomic analysis revealed the key genes involved in acetic acid (HAc) biosynthesis (i.e. phosphate acetyltransferase, PTA), ß-oxidation pathway (acetyl-CoA C-acetyltransferase) and propionic acid (HPr) conversion was slightly promoted compared with control. Furthermore, BACs inhibited the acetotrophic methanogenesis (i.e. acetyl-CoA synthetase), especially BAC concentration was up to 15 mg/g TSS, thereby enhanced short chain fatty acids (SCFAs) accumulation. Overall, chronic stimulation of functional microorganisms with increasing concentrations of BACs impact WAS fermentation.


Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Acetilcoenzima A/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Anaerobiosis , Compuestos de Benzalconio , Reactores Biológicos/microbiología , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ligasas/metabolismo , Metano , Fosfato Acetiltransferasa/metabolismo , Propionatos , Aguas del Alcantarillado/microbiología
10.
Plant Sci ; 319: 111243, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487651

RESUMEN

Cyperus esculentus is considered one of the most promising oil crops due to its oil-rich tuber, wide adaptability and large biomass production. Preferable triacylglycerol (TAG) composition, especially high oleic acid content, makes tuber oil suitable for human consumption and biodiesel production. However, the mechanism underlying oleic acid enrichment in the tuber remains unknown. Plastidial stearoyl-ACP desaturase (SAD) catalyses the formation of monounsaturated fatty acids (MUFAs), which may function crucially for high accumulation of oleic acid in C. esculentus tubers. In this study, two full-length cDNAs encoding SAD were isolated from the developing tubers of C. esculentus, namely, CeSAD1 and CeSAD2, with ORFs of 1194 bp and 1161 bp, respectively. Quantitative RT-PCR analysis showed that CeSAD genes were highly expressed in tubers. The expression pattern during tuber formation was also significantly correlated with fatty acid and oil accumulation dynamics. Overexpression of each CeSAD gene could restore the normal growth of the defective yeast BY4389, indicating that both CeSADs had fatty acid desaturase activity to catalyse MUFA biosynthesis. A tobacco genetic transformation assay demonstrated that both CeSAD enzymes had high enzyme activity. Exogenous addition of exogenous fatty acids to feed yeast revealed that CeSAD1 has a more substantial substrate preference ratio for C18:0 than CeSAD2 did. Moreover, the overexpression of CeSAD1 significantly increased host tolerance against low-temperature stress. Our data add new insights into the deep elucidation of oleic acid-enriched oils in Cyperus esculentus tubers, showing CeSAD, especially CeSAD1, as the target gene in genetic modification to increase oil and oleic yields in oil crops as well as stress tolerance.


Asunto(s)
Cyperus , Ácido Graso Desaturasas , Cyperus/genética , Cyperus/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Aceites/metabolismo , Ácido Oléico/metabolismo , Levaduras/metabolismo
11.
Biotechnol Biofuels Bioprod ; 15(1): 21, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216635

RESUMEN

BACKGROUND: Vernonia galamensis native to Africa is an annual oleaginous plant of Asteraceae family. As a newly established industrial oil crop, this plant produces high level (> 70%) of vernolic acid (cis-12-epoxyoctadeca-cis-9-enoic acid), which is an unusual epoxy fatty acid (EFA) with multiple industrial applications. Here, transcriptome analysis and fatty acid profiling from developing V. galamensis seeds were integrated to uncover the critical metabolic pathways responsible for high EFA accumulation, aiming to identify the target genes that could be used in the biotechnological production of high-value oils. RESULTS: Based on oil accumulation dynamics of V. galamensis seeds, we harvested seed samples from three stages (17, 38, and 45 days after pollination, DAP) representing the initial, fast and final EFA accumulation phases, and one mixed sample from different tissues for RNA-sequencing, with three biological replicates for each sample. Using Illumina platform, we have generated a total of 265 million raw cDNA reads. After filtering process, de novo assembly of clean reads yielded 67,114 unigenes with an N50 length of 1316 nt. Functional annotation resulted in the identification of almost all genes involved in diverse lipid-metabolic pathways, including the novel fatty acid desaturase/epoxygenase, diacylglycerol acyltransferases, and phospholipid:diacylglycerol acyltransferases. Expression profiling revealed that various genes associated with acyl editing, fatty acid ß-oxidation, triacylglycerol assembly and oil-body formation had greater expression levels at middle developmental stage (38 DAP), which were consistent with the fast accumulation of EFA in V. galamensis developing seed, these genes were detected to play fundamental roles in EFA production. In addition, we isolated some transcription factors (such as WRI1, FUS3 and ABI4), which putatively regulated the production of V. galamensis seed oils. The transient expression of the selected genes resulted in a synergistic increase of EFA-enriched TAG accumulation in tobacco leaves. Transcriptome data were further confirmed by quantitative real-time PCR for twelve key genes in EFA biosynthesis. Finally, a comprehensive network for high EFA accumulation in V. galamensis seed was established. CONCLUSIONS: Our findings provide new insights into molecular mechanisms underlying the natural epoxy oil production in V. galamensis. A set of genes identified here could be used as the targets to develop other oilseeds highly accumulating valued epoxy oils for commercial production.

12.
Sci Total Environ ; 813: 152411, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34942263

RESUMEN

Integrated microbial electrolysis cell-anaerobic digestion (MEC-AD) systems have demonstrated potential advantages for methane production in the presence of small amounts of residual inhibitors. In this study, a series of tests were conducted to analyse the acidification and methanogenesis performance of pretreated rice straw (RS) in anaerobic digestion (AD) and MEC-AD systems after the addition of Fenton-like reagents. The results indicated that the short-chain acids (SCFAs) accumulations reached 2284.64 ± 21.57 mg COD/L with a dosage ratio of 1/4 (g RS/g VSS sludge) in the MEC-AD system and that methane production increased by 63.8% compared with that of an individual AD system. In the interim, the net energy output reached 1.09 × 103 J/g TCOD, which was 1.23 times higher than that of the AD system. The residual Fe3+/Fe2+ in the pretreatment reagent was capable of promoting acidification and methanogenesis in sludge and RS fermentation. The RS hydrolysis products could constrain methanogenesis, which can be mitigated by introducing an MEC. The microbiological analyses revealed that the MEC strongly increased the enrichment of hydrogenotrophic methanogens, especially Methanobacterium (61.16%). Meanwhile, the Syntrophomonas and Acetobacterium abundances increased to 2.81% and 2.65%, respectively, which suggested the reinforcement of acetogenesis and methanogenesis. Therefore, the enhanced hydrogenotrophic methanogens might have served as the key for enhancing the efficiency of methanogenesis due to the introduction of an MEC.


Asunto(s)
Oryza , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Metano , Eliminación de Residuos Líquidos
13.
Shock ; 57(2): 281-290, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798633

RESUMEN

BACKGROUND: Cell-based therapies using mesenchymal stem cell derived extracellular vesicles (EVs) improve neurologic outcomes in animal models of traumatic brain injury (TBI), stroke, and hemorrhage. Using a porcine 7-day survival model of TBI and hemorrhagic shock (HS), we previously demonstrated that EV-treatment was associated with reduced brain lesion size, neurologic severity score, and cerebral inflammation. However, the underlying cellular and genomic mechanisms remain poorly defined. We hypothesize that EV treatment modulates the brain transcriptome to enhance neuroprotection and neurorestoration following TBI + HS. METHODS: Swine were subjected to severe TBI (8-mm cortical impact) and HS (40% blood volume). After 1 h of shock, animals were randomized (n = 4/group) to treatment with either lactated Ringer's (LR) or LR + EV. Both groups received fluid resuscitation after 2 h of shock, and autologous packed red blood cells 5 h later.After 7-days, brains were harvested and RNA-sequencing was performed. The transcriptomic data were imported into the iPathway pipeline for bioinformatics analyses. RESULTS: 5,273 genes were differentially expressed in the LR + EV group versus LR alone (total 9,588 measured genes). Genes with the greatest upregulation were involved in synaptic transmission and neuronal development and differentiation, while downregulated genes were involved in inflammation. GO-terms experiencing the greatest modulation were involved in inflammation, brain development, and cell adhesion. Pathway analysis revealed significant modulation in the glutamatergic and GABAergic systems. Network analysis revealed downregulation of inflammation, and upregulation of neurogenesis, and neuron survival and differentiation. CONCLUSIONS: In a porcine model of TBI + HS, EV treatment was associated with an attenuation of cerebral inflammatory networks and a promotion of neurogenesis and neuroplasticity. These transcriptomic changes could explain the observed neuroprotective and neurorestorative properties associated with EV treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/ultraestructura , Choque Hemorrágico/terapia , Animales , Encéfalo , Modelos Animales de Enfermedad , Intervención Médica Temprana , Neuroprotección/genética , Porcinos , Transcriptoma
14.
Front Oncol ; 11: 657029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912698

RESUMEN

Angiogenesis plays an important role in tumor initiation and progression of glioma. Seeking for biomarkers associated with angiogenesis is important in enhancing our understanding of glioma biologically and identifying its new drug targets. RNA-sequencing (RNA-seq) data and matched clinical data were downloaded from the CGGA database. A series of filtering analyses were performed to screen for reliable genes: survival, multivariate Cox, ROC curve filtration, and clinical correlation analyses. After immunohistochemical verification, RAB42 was identified as a reliable gene for further single gene analysis. Afterwards, we performed gene set enrichment analysis (GSEA) and co-expression analysis to establish the related molecular mechanisms and signal pathways in glioma. Finally, the gene functions and the mechanisms were investigated in vitro experiments. A total of 23270 mRNA expression and 1018 glioma samples were included in this study. After the three filtering analyses, we selected ten genes for immunohistochemical verification: KLHDC8A, IKIP, HIST1H2BK, HIST1H2BJ, GNG5, FAM114A1, TMEM71, RAB42, CCDC18, and GAS2L3. Immunostaining demonstrated that RAB42 was significantly expressed on the membrane of glioma tissues but not in normal tissues. These results were verified and validated in GEPIA datasets, and the association between RAB42 with clinical features was also evaluated. Analysis of gene functions indicated that RAB42 activated VEGF signaling pathways and the mechanism was associated with natural killer cell mediated cytotoxicity, JAK-STAT signaling pathway and apoptosis pathways by PI3K/AKT in gliomas. Experiments in vitro suggested that the proliferation and invasion of glioma cells might be inhibited after downregulating of RAB42. And the tumorigenesis promotion of RAB42 may relate to the activation of VEGF signaling pathway. Taken together, this study shows that the overexpression of RAB42 is an independent prognostic factor of adverse prognosis. Its pro-oncogenic mechanism may be associated with the activation of VEGF signaling pathways.

15.
Front Oncol ; 11: 657002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221975

RESUMEN

Head and neck cancer (HNC) is the fifth most common cancer worldwide. In this study, we performed an integrative analysis of the discovery set and established an eight-gene signature for the prediction of prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Univariate Cox analysis was used to identify prognosis-related genes (with P < 0.05) in the GSE41613, GSE65858, and TCGA-HNSC RNA-Seq datasets after data collection. We performed LASSO Cox regression analysis and identified eight genes (CBX3, GNA12, P4HA1, PLAU, PPL, RAB25, EPHX3, and HLF) with non-zero regression coefficients in TCGA-HNSC datasets. Survival analysis revealed that the overall survival (OS) of GSE41613 and GSE65858 datasets and the progression-free survival(DFS)of GSE27020 and GSE42743 datasets in the low-risk group exhibited better survival outcomes compared with the high-risk group. To verify that the eight-mRNA prognostic model was independent of other clinical features, KM survival analysis of the specific subtypes with different clinical characteristics was performed. Univariate and multivariate Cox regression analyses were used to identify three independent prognostic factors to construct a prognostic nomogram. Finally, the GSVA algorithm identified six pathways that were activated in the intersection of the TCGA-HNSC, GSE65858, and GSE41613 datasets, including early estrogen response, cholesterol homeostasis, oxidative phosphorylation, fatty acid metabolism, bile acid metabolism, and Kras signaling. However, the epithelial-mesenchymal transition pathway was inhibited at the intersection of the three datasets. In conclusion, the eight-gene prognostic signature proved to be a useful tool in the prognostic evaluation and facilitate personalized treatment of HNSCC patients.

16.
J Surg Res ; 266: 125-141, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33991999

RESUMEN

OBJECTIVE: Valproic acid (VPA) treatment improves survival in animal models of injuries on doses higher than those allowed by Food and Drug Administration (FDA). We investigated the proteomic alterations induced by a single high-dose (140mg/kg) of VPA (VPA140) compared to the FDA-approved dose of 30mg/kg (VPA30) in healthy humans. We also describe the proteomic and transcriptomic changes induced by VPA140 in an injured patient. We hypothesized that VPA140 would induce cytoprotective changes in the study participants. METHODS: Serum samples were obtained from healthy subjects randomized to two groups; VPA140 and VPA30 at 3 timepoints: 0h(baseline), 2h, and 24h following infusion(n = 3/group). Samples were also obtained from an injured patient that received VPA140 at 0h, 6h and 24h following infusion. Proteomic analyses were performed using liquid chromatography-mass spectrometry (LC-MS/MS), and transcriptomic analysis was performed using RNA-sequencing. Differentially expressed (DE) proteins and genes were identified for functional annotation and pathway analysis using iPathwayGuide and gene set enrichment analysis (GSEA), respectively. RESULTS: For healthy individuals, a dose comparison was performed between VPA140 and VPA30 groups at 2 and 24 h. Functional annotation showed that top biological processes in VPA140 versus VPA30 analysis at 2 h included regulation of fatty acid (P = 0.002) and ATP biosynthesis (P = 0.007), response to hypoxia (P = 0.017), cell polarity regulation (P = 0.031), and sequestration of calcium ions (P = 0.031). Top processes at 24 h in VPA140 versus VPA30 analysis included amino acid metabolism (P = 0.023), collagen catabolism (P = 0.023), and regulation of protein breakdown (P = 0.023). In the injured patient, annotation of the DE proteins in the serum showed that top biological processes at 2 h included neutrophil chemotaxis (P = 0.002), regulation of cellular response to heat (P = 0.008), regulation of oxidative stress (P = 0.008) and regulation of apoptotic signaling pathway (P = 0.008). Top biological processes in the injured patient at 24 h included autophagy (P = 0.01), glycolysis (P = 0.01), regulation of apoptosis (P = 0.01) and neuron apoptotic processes (P = 0.02). CONCLUSIONS: VPA140 induces cytoprotective changes in human proteome not observed in VPA30. These changes may be responsible for its protective effects in response to injuries.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Sustancias Protectoras/farmacología , Proteoma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ácido Valproico/farmacología , Adolescente , Adulto , Anciano , Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica/métodos , Voluntarios Sanos , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Sustancias Protectoras/uso terapéutico , Proteoma/metabolismo , Proteómica/métodos , Factores de Tiempo , Resultado del Tratamiento , Ácido Valproico/uso terapéutico , Adulto Joven
17.
J Pharm Anal ; 11(1): 122-127, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33717618

RESUMEN

Drug target discovery is the basis of drug screening. It elucidates the cause of disease and the mechanism of drug action, which is the essential of drug innovation. Target discovery performed in biological systems is complicated as proteins are in low abundance and endogenous compounds may interfere with drug binding. Therefore, methods to track drug-target interactions in biological matrices are urgently required. In this work, a Fe3O4 nanoparticle-based approach was developed for drug-target screening in biofluids. A known ligand-protein complex was selected as a principle-to-proof example to validate the feasibility. After incubation in cell lysates, ligand-modified Fe3O4 nanoparticles bound to the target protein and formed complexes that were separated from the lysates by a magnet for further analysis. The large surface-to-volume ratio of the nanoparticles provides more active sites for the modification of chemical drugs. It enhances the opportunity for ligand-protein interactions, which is beneficial for capturing target proteins, especially for those with low abundance. Additionally, a one-step magnetic separation simplifies the pre-processing of ligand-protein complexes, so it effectively reduces the endogenous interference. Therefore, the present nanoparticle-based approach has the potential to be used for drug target screening in biological systems.

18.
Plant Sci ; 303: 110752, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33487340

RESUMEN

Diacylglycerol acyltransferases (DGAT) catalyze the final committed step of de novo biosynthesis of triacylglycerol (TAG) in plant seeds. This study was to functionally characterize DGAT3 genes in Camelina sativa, an important oil crops accumulating high levels of unsaturated fatty acids (UFAs) in seeds. Three camelina DGAT3 genes (CsDGAT3-1, CsDGAT3-2 and CsDGAT3-3) were identified, and the encoded proteins were predicted to be cytosolic-soluble proteins present as a homodimer containing the 2Fe-2S domain. They had divergent expression patterns in various tissues, suggesting that they may function in tissue-specific manner with CsDGAT3-1 in roots, CsDGAT3-2 in flowers and young seedlings, and CsDGAT3-3 in developing seeds. Functional complementation assay in yeast demonstrated that CsDGAT3-3 restored TAG synthesis. TAG content and UFAs, particularly eicosenoic acid (EA, 20:1n-9) were largely increased by adding exogenous UFAs in the yeast medium. Further heterogeneously transient expression in N. benthamiana leaves and seed-specific expression in tobacco seeds indicated that CsDGAT3-3 significantly enhanced oil and UFA accumulation with much higher level of EA. Overall, CsDGAT3-3 exhibited a strong abilty catalyzing TAG synthesis and high substrate preference for UFAs, especially for 20:1n-9. The present data provide new insights for further understanding oil biosynthesis mechanism in camelina seeds, indicating that CsDGAT3-3 may have practical applications for increasing both oil yield and quality.


Asunto(s)
Acilcoenzima A/metabolismo , Aciltransferasas/genética , Camellia/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Aciltransferasas/metabolismo , Aciltransferasas/fisiología , Camellia/enzimología , Camellia/fisiología , Clonación Molecular , Ácidos Grasos Monoinsaturados/metabolismo , Genes de Plantas/fisiología , Organismos Modificados Genéticamente , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae , Análisis de Secuencia de ADN , Especificidad por Sustrato , Nicotiana , Transcriptoma
19.
J Trauma Acute Care Surg ; 90(3): 507-514, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196629

RESUMEN

OBJECTIVE: Traumatic brain injury (TBI) is a leading cause of trauma-related morbidity and mortality. Valproic acid (VPA) has been shown to attenuate brain lesion size and swelling within the first few hours following TBI. Because injured neurons are sensitive to metabolic changes, we hypothesized that VPA treatment would alter the metabolic profile in the perilesional brain tissues to create a neuroprotective environment. METHODS: We subjected swine to combined TBI (12-mm cortical impact) and hemorrhagic shock (40% blood volume loss and 2 hours of hypotension) and randomized them to two groups (n = 5/group): (1) normal saline (NS; 3× hemorrhage volume) and (2) NS-VPA (NS, 3× hemorrhage volume; VPA, 150 mg/kg). After 6 hours, brains were harvested, and 100 mg of the perilesional tissue was used for metabolite extraction. Samples were analyzed using reversed-phase liquid chromatography-mass spectrometry in positive and negative ion modes, and data were analyzed using MetaboAnalyst software (McGill University, Quebec, Canada). RESULTS: In untargeted reversed-phase liquid chromatography-mass spectrometry analysis, we detected 3,750 and 1,955 metabolites in positive and negative ion modes, respectively. There were no significantly different metabolites in positive ion mode; however, 167 metabolite features were significantly different (p < 0.05) in the negative ion mode, which included VPA derivates. Pathway analysis showed that several pathways were affected in the treatment group, including the biosynthesis of unsaturated fatty acids (p = 0.001). Targeted amino acid analysis on glycolysis/tricarboxylic acid (TCA) cycle revealed that VPA treatment significantly decreased the levels of the excitotoxic amino acid serine (p = 0.001). CONCLUSION: Valproic acid can be detected in perilesional tissues in its metabolized form. It also induces metabolic changes in the brains within the first few hours following TBI to create a neuroprotective environment.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Choque Hemorrágico/tratamiento farmacológico , Choque Hemorrágico/metabolismo , Ácido Valproico/uso terapéutico , Animales , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Neuroprotección , Choque Hemorrágico/patología , Porcinos
20.
Shock ; 55(1): 110-120, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32925172

RESUMEN

INTRODUCTION: We previously showed that the addition of valproic acid (VPA), a histone deacetylase inhibitor, to fresh frozen plasma (FFP) resuscitation attenuates brain lesion size and swelling following traumatic brain injury (TBI) and hemorrhagic shock (HS). The goal of this study was to use computational biology tools to investigate the effects of FFP+VPA on the brain transcriptome following TBI+HS. METHODS: Swine underwent TBI+HS, kept in shock for 2 h, and resuscitated with FFP or FFP + VPA (n = 5/group). After 6 h of observation, brain RNA was isolated and gene expression was analyzed using a microarray. iPathwayGuide, Gene Ontology (GO), Gene-Set Enrichment Analysis, and Enrichment Mapping were used to identify significantly impacted genes and transcriptomic networks. RESULTS: Eight hundred differentially expressed (DE) genes were identified out of a total of 9,118 genes. Upregulated genes were involved in promotion of cell division, proliferation, and survival, while downregulated genes were involved in autophagy, cell motility, neurodegenerative diseases, tumor suppression, and cell cycle arrest. Seven hundred ninety-one GO terms were significantly enriched. A few major transcription factors, such as TP53, NFKB3, and NEUROD1, were responsible for modulating hundreds of other DE genes. Network analysis revealed attenuation of interconnected genes involved in inflammation and tumor suppression, and an upregulation of those involved in cell proliferation and differentiation. CONCLUSION: Overall, these results suggest that VPA treatment creates an environment that favors production of new neurons, removal of damaged cells, and attenuation of inflammation, which could explain its previously observed neuroprotective effects.


Asunto(s)
Lesiones Traumáticas del Encéfalo/prevención & control , Inhibidores de Histona Desacetilasas/uso terapéutico , Plasma , Choque Hemorrágico/prevención & control , Transcriptoma/efectos de los fármacos , Ácido Valproico/uso terapéutico , Animales , Transfusión de Componentes Sanguíneos , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Femenino , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...