Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sci Total Environ ; 947: 174334, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955279

RESUMEN

High-precision rainfall erosivity mapping is crucial for accurately evaluating regional soil erosion on the Tibetan Plateau (TP) under the backdrop of climate warming and humidification. Although high spatiotemporal resolution gridded precipitation data provides the foundation for rainfall erosivity mapping, the increasing spatial heterogeneity of rainfall with decreasing temporal granularity can lead to greater errors when directly computing rainfall erosivity from gridded precipitation data. In this study, a site-scale conversion coefficient was established so that rainfall erosivity calculated using hourly data can be converted to rainfall erosivity calculated using per-minute data. A revised model was established for calculating the rainfall erosivity based on high-resolution hourly precipitation data from the Third Pole gridded precipitation dataset (TPHiPr). The results revealed a notable underestimation in the original calculation results obtained using the TPHiPr, but strong correlation was observed between the two sets of results. There was a significant improvement in the Nash-Sutcliffe coefficient of efficiency (from -0.39 to 0.80) and the Percent Bias (from -63.95 % to 0.37 %) after model revision. The TPHiPr effectively depict the spatial characteristics of rainfall erosivity on the TP. It accurately reflected the rain shadow area on the northern flank of the Himalayas and the dry-hot valley in the Hengduan Mountains. It also showed high rainfall erosivity values in the tropical rainforest area on the southern flank of the eastern Himalayas. The overall trend of rainfall erosivity has increased on the TP during the period 1981 to 2020, with 65.91 % of the regions exhibiting an increasing trend and 22.25 % showing significant increases, indicating an intensified risk of water erosion. These findings suggest that the 40-year-high spatial resolution rainfall erosivity dataset can provide accurate data support for a quantitative understanding of soil erosion on the TP.

2.
Virology ; 597: 110154, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38917693

RESUMEN

To determine the pathogenicity of two different genotypes of avian hepatitis E strains in two species of birds, a total of thirty healthy 12-week-old birds were used. After inoculation, fecal virus shedding, viremia, seroconversion, serum alanine aminotransferase (ALT) increases and liver lesions were evaluated. The results revealed that CHN-GS-aHEV and CaHEV could both infect Hy-Line hens and silkie fowls, respectively. Compared to the original avian HEV strain, the cross-infected virus exhibited a delay of 2 weeks and 1 week in emerged seroconversion, viremia, fecal virus shedding, and increased ALT level, and also showed mild liver lesions. These findings suggested that CHN-GS-aHEV may have circulated in chickens. Overall, these two different genotypes of avian HEV showed some variant pathogenicity in different bird species. This study provides valuable data for further analysis of the epidemic conditions of two avian HEVs in Hy-Line hens and silkie fowls.

3.
J Immunol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905108

RESUMEN

Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.

4.
J Virol ; 98(4): e0164923, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38548704

RESUMEN

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE: Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Hepatitis Viral Humana , Humanos , Virus de la Hepatitis E/genética , Factores Inmunológicos , Proteína Disulfuro Isomerasas/genética , Tiorredoxinas/genética , Virión/metabolismo
5.
ACS Sustain Chem Eng ; 12(11): 4435-4443, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38516400

RESUMEN

Chemical recycling of polyurethane (PU) waste is essential to displace the need for virgin polyol production and enable sustainable PU production. Currently, less than 20% of PU waste is downcycled through rebinding to lower value products than the original PU. Chemical recycling of PU waste often requires significant input of materials like solvents and slow reaction rates. Here, we report the fast (<10 min) and solvent-free acidolysis of a model toluene diisocyanate (TDI)-based flexible polyurethane foam (PUF) at <200 °C using maleic acid (MA) with a recovery of recycled polyol (repolyol) in 95% isolated yield. After workup (hydrolysis of repolyl ester and separations), the repolyol exhibits favorable physical properties that are comparable to the virgin polyol; these include 54.1 mg KOH/g OH number and 624 cSt viscosity. Overall, 80% by weight of the input PUF is isolated into two clean-cut fractions containing the repolyol and toluene diamine (TDA). Finally, end-of-life (EOL) mattress PUF waste is recycled successfully with high recovery of repolyol using MA acidolysis. The solvent-free and fast acidolysis with MA demonstrated in this work with both model and EOL PUF provides a potential pathway for sustainable and closed-loop PU production.

6.
ACS Macro Lett ; 13(4): 435-439, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38546447

RESUMEN

Polyurethane (PU) is the sixth most used plastic in the world. Because many PU derived materials are thermosets and the monomers are valuable, chemical recycling to recover the polyol component is the most viable pathway to utilizing postconsumer PU waste in a closed-loop fashion. Acidolysis is an effective method to recover polyol from PU waste. Previous studies of PU acidolysis rely on the use of dicarboxylic acid (DCA) in high temperature reactions (>200 °C) in the liquid phase and result in unwanted byproducts, high energy consumption, complex separations of excess organic acid, and an overall process that is difficult to scale up. In this work, we demonstrate selective PU acidolysis with DCA vapor to release polyol at temperatures below the melting points of the DCAs (<150 °C). Notably, acidolysis with DCA vapor adheres to the principles of green chemistry and prevents in part esterification of the polyol product, eliminating the need for additional hydrolysis/processing to obtain the desired product. The methodology was successfully applied to a commercial PU foam (PUF) postconsumer waste.

7.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38445728

RESUMEN

We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.

8.
Poult Sci ; 103(4): 103501, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350386

RESUMEN

Previous studies have shown that avian hepatitis E virus (HEV) decreases egg production by 10-40% in laying hens, but have not fully elucidated the mechanism of there. In this study, we evaluated the replication of avian HEV in the ovaries of laying hens and the mechanism underlying the decrease in egg production. Forty 150-days-old commercial laying hens were randomly divided into 2 groups of 20 hens each. A total of 1 mL (104GE) of avian HEV stock was inoculated intravenously into each chicken in the experimental group, with 20 chickens in the other group serving as negative controls. Five chickens from each group were necropsied weekly for histopathological examination. The pathogenicity of avian HEV has been characterized by seroconversion, viremia, fecal virus shedding, ovarian lesions, and decreased egg production. Both positive and negative-strand avian HEV RNA, and ORF2 antigens can be detected in the ovaries, suggesting that avian HEV can replicate in the ovaries and serve as an important extrahepatic replication site. The ovaries of laying hens underwent apoptosis after avian HEV infection. These results indicate that avian HEV infection and replication in ovarian tissues cause structural damage to the cells, leading to decreased egg production.


Asunto(s)
Virus de la Hepatitis E , Hepevirus , Quistes Ováricos , Neoplasias Ováricas , Enfermedades de las Aves de Corral , Animales , Femenino , Pollos , Quistes Ováricos/veterinaria , Neoplasias Ováricas/veterinaria , Hepevirus/genética , Apoptosis
9.
Sci Data ; 11(1): 101, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245566

RESUMEN

Topography is an important factor affecting soil erosion and is measured as a combination of the slope length and slope steepness (LS-factor) in erosion models, like the Chinese Soil Loss Equation. However, global high-resolution LS-factor datasets have rarely been published. Challenges arise when attempting to extract the LS-factor on a global scale. Furthermore, existing LS-factor estimation methods necessitate projecting data from a spherical trapezoidal grid to a planar rectangle, resulting in grid size errors and high time complexity. Here, we present a global 1-arcsec resolution LS-factor dataset (DS-LS-GS1) with an improved method for estimating the LS-factor without projection conversion (LS-WPC), and we integrate it into a software tool (LS-TOOL). Validation of the Himmelblau-Orlandini mathematical surface shows that errors are less than 1%. We assess the LS-WPC method on 20 regions encompassing 5 landform types, and R2 of LS-factor are 0.82, 0.82, 0.83, 0.83, and 0.84. Moreover, the computational efficiency can be enhanced by up to 25.52%. DS-LS-GS1 can be used as high-quality input data for global soil erosion assessment.

10.
J Virol ; 98(2): e0165023, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38271227

RESUMEN

Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Anticuerpos de Dominio Único , Vacunas Virales , Animales , Humanos , Ratones , Proteínas de la Cápside , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Epítopos , Porcinos , Vacunas Virales/química , Vacunas Virales/inmunología
11.
J Virol ; 98(1): e0131923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38084961

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a serious global pig industry disease. Understanding the mechanism of viral replication and developing efficient antiviral strategies are necessary for combating with PRRS virus (PRRSV) infection. Recently, nanobody is considered to be a promising antiviral drug, especially for respiratory viruses. The present study evaluated two nanobodies against PRRSV nucleocapsid (N) protein (PRRSV-N-Nb1 and -Nb2) for their anti-PRRSV activity in vitro and in vivo. The results showed that intracellularly expressed PRRSV-N-Nb1 significantly inhibited PRRSV-2 replication in MARC-145 cells (approximately 100%). Then, the PRRSV-N-Nb1 fused with porcine IgG Fc (Nb1-pFc) as a delivering tag was produced and used to determine its effect on PRRSV-2 replication in porcine alveolar macrophages (PAMs) and pigs. The inhibition rate of Nb1-pFc against PRRSV-2 in PAMs could reach >90%, and it can also inhibit viral replication in vivo. Epitope mapping showed that the motif Serine 105 (S105) in PRRSV-2 N protein was the key amino acid binding to PRRSV-N-Nb1, which is also pivotal for the self-interaction of N protein via binding to Arginine 97. Moreover, viral particles were not successfully rescued when the S105 motif was mutated to Alanine (S105A). Attachment, entry, genome replication, release, docking model analysis, and blocking enzyme-linked immunosorbent assay (ELISA) indicated that the binding of PRRSV-N-Nb1 to N protein could block its self-binding, which prevents the viral replication of PRRSV. PRRSV-N-Nb1 may be a promising drug to counter PRRSV-2 infection. We also provided some new insights into the molecular basis of PRRSV N protein self-binding and assembly of viral particles.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) causes serious economic losses to the swine industry worldwide, and there are no highly effective strategies for prevention. Nanobodies are considered a promising novel approach for treating diseases because of their ease of production and low costing. Here, we showed that PRRSV-N-Nb1 against PRRSV-N protein significantly inhibited PRRSV-2 replication in vitro and in vivo. Furthermore, we demonstrated that the motif Serine 105 (S105) in PRRSV-N protein was the key amino acid to interact with PRRSV-N-Nb1 and bond to its motif R97, which is important for the self-binding of N protein. The PRRSV-N-Nb1 could block the self-interaction of N protein following viral assembly. These findings not only provide insights into the molecular basis of PRRSV N protein self-binding as a key factor for viral replication for the first time but also highlight a novel target for the development of anti-PRRSV replication drugs.


Asunto(s)
Proteínas de la Nucleocápside , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Anticuerpos de Dominio Único , Animales , Aminoácidos , Línea Celular , Proteínas de la Nucleocápside/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Serina , Anticuerpos de Dominio Único/farmacología , Porcinos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
12.
Microbiol Spectr ; 11(4): e0360722, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37347160

RESUMEN

Hepatitis E virus (HEV) is a zoonotic pathogen that is widespread worldwide. At present, most enzyme-linked immunosorbent assay (ELISA) kits only detect antibodies against human HEV. In this study, a nanobody-horseradish peroxidase (HRP) fusion protein-based competitive ELISA (cELISA) with more convenience and spectral characteristics for HEV antibody detection was developed and used to detect HEV IgG in various species. First, 6 anti-swine HEV capsid protein nanobodies were screened using phage display technology from an immunized Bactrian camel. Then, HEV-Nb67-HRP fusions were expressed and used as a probe for developing a cELISA. The cutoff value of the cELISA was 17.8%, and there was no cross-reaction with other anti-swine virus antibodies, suggesting that the cELISA had good specificity. The intra-assay and interassay coefficients of variation (CVs) were 1.33 to 5.06% and 1.52 to 6.84%, respectively. The cELISA and Western blot showed a higher coincidence rate (97.14%, kappa value = 0.927) than cELISA and indirect ELISA (95.00%, kappa value = 0.876) in clinical swine serum samples. Finally, the seroprevalence of HEV IgG in humans, pigs, rabbits, cows, and goats was 30.67%, 19.26%, 8.75%, 27.59%, and 18.08%, respectively, suggesting that cELISA may have a broader scale for mammalian HEV antibody detection. These results suggest that the newly developed cELISA was rapid, low-cost, reliable, and useful for the serological evaluation of current HEV. IMPORTANCE HEV is thought to be a zoonotic infection and is widespread worldwide; it is beneficial to establish a more convenient and spectral method for HEV antibody detection. In this study, a convenient, time-saving, reproducible, highly sensitive, specific, and novel nanobody-based cELISA was developed and can be used to detect IgG antibodies against mammalian HEV. It provides a new technique for serological evaluation and ELISA-based diagnosis of HEV infection.


Asunto(s)
Virus de la Hepatitis E , Femenino , Bovinos , Humanos , Porcinos , Animales , Conejos , Animales Domésticos , Estudios Seroepidemiológicos , Anticuerpos Antivirales , Anticuerpos Antihepatitis/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G , Mamíferos
13.
Poult Sci ; 102(1): 102326, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442305

RESUMEN

Avian hepatitis E virus (avian HEV) increases poultry mortality and decreases egg production, leading to huge economic losses worldwide. However, there is no effective serological test for avian HEV. Researchers previously created a testing platform using the nanobody (Nb)-horseradish peroxidase (HRP) fusion protein as an ultrasensitive probe to develop competitive ELISA (cELISA) to detect antibodies against different animal viruses. In this study, a rapid and reliable cELISA was developed to test for antibodies against avian HEV using the same platform. Six anti-avian HEV capsid protein nanobodies were selected from an immunized Bactrian camel using phage display technology. The avian HEV-Nb49-HRP fusion protein was expressed and used as a probe for developing a cELISA assay to test for avian HEV antibodies. The cut-off value of the developed cELISA was 22.0%. There was no cross-reaction with other anti-avian virus antibodies, suggesting that the cELISA had good specificity. The coefficients of variation were 0.91% to 4.21% (intra-assay) and 1.52% to 6.35% (inter-assay). Both cELISA and indirect ELISA showed a consistency of 86.7% (kappa = 0.738) for clinical chicken serum samples, and coincidence between cELISA and Western blot was 96.0% (kappa = 0.919). The epitope recognized by Nb49 was located in aa 593-604 of the avian HEV capsid protein, and the peptide (TFPS) in aa 601-604 was essential for binding. The novel cELISA is a saving cost, rapid, useful, and reliable assay for the serological investigation of avian HEV. More importantly, the peptide TFPS may be crucial to immunodominant antigen composition and protection.


Asunto(s)
Hepevirus , Animales , Proteínas de la Cápside , Peroxidasa de Rábano Silvestre/metabolismo , Pollos/metabolismo , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Péptidos
14.
Front Microbiol ; 13: 1048180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504801

RESUMEN

Hepatitis E virus (HEV) is thought to be a zoonotic pathogen that causes serious economic loss and threatens human health. However, there is a lack of efficient antiviral strategies. As a more promising tool for antiviral therapy, nanobodies (also named single-domain antibodies, sdAbs) exhibit higher specificity and affinity than traditional antibodies. In this study, nanobody anti-genotype four HEV open reading frame 2 (ORF2) was screened using phage display technology, and two nanobodies (nb14 and nb53) with high affinity were prokaryotically expressed. They were identified to block HEV ORF2 virus like particle (VLP) sp239 (aa 368-606) absorbing HepG2 cells in vitro. With the previously built animal model, the detection indicators of fecal shedding, viremia, seroconversion, alanine aminotransferase (ALT) levels, and liver lesions showed that nb14 could completely protect rabbits from swine HEV infection, and nb53 partially blocked swine HEV infection in rabbits. Collectively, these results revealed that nb14, with its anti-HEV neutralizing activity, may be developed as an antiviral drug for HEV.

15.
J Biol Chem ; 298(12): 102709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402446

RESUMEN

Circulation of influenza A virus (IAV), especially within poultry and pigs, continues to threaten public health. A simple and universal detecting method is important for monitoring IAV infection in different species. Recently, nanobodies, which show advantages of easy gene editing and low cost of production, are a promising novel diagnostic tool for the monitoring and control of global IAVs. In the present study, five nanobodies against the nucleoprotein of H9N2 IAV were screened from the immunized Bactrian camel by phage display and modified with horseradish peroxidase (HRP) tags. Out of which, we determined that H9N2-NP-Nb5-HRP can crossreact with different subtypes of IAVs, and this reaction is also blocked by positive sera for antibodies against different IAV subtypes. Epitope mapping showed that the nanobody-HRP fusion recognized a conserved conformational epitope in all subtypes of IAVs. Subsequently, we developed a nanobody-based competitive ELISA (cELISA) for detecting anti-IAV antibodies in different species. The optimized amount of coating antigen and dilutions of the fusion and testing sera were 100 ng/well, 1:4000, and 1:10, respectively. The time for operating the cELISA was approximately 35 min. The cELISA showed high sensitivity, specificity, reproducibility, and stability. In addition, we found that the cELISA and hemagglutination inhibition test showed a consistency of 100% and 87.91% for clinical and challenged chicken sera, respectively. Furthermore, the agreement rates were 90.4% and 85.7% between the cELISA and commercial IEDXX ELISA kit. Collectively, our developed nanobody-HRP fusion-based cELISA is an ideal method for monitoring IAV infection in different species.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Anticuerpos de Dominio Único , Animales , Humanos , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Reproducibilidad de los Resultados , Porcinos , Aves de Corral
16.
Anal Chim Acta ; 1203: 339705, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35361433

RESUMEN

Salmonella are major pathogens that cause foodborne diseases. In this work, a broad-spectrum Salmonella nanobody-01 (Nb-01) was isolated and applied in the development of a streptavidin-bridged sandwich ELISA (SAB-ELISA) for simultaneously identifying five Salmonella serovars, including Salmonella Enteritidis (S. Enteritidis), Salmonella Typhimurium (S. Typhimurium), Salmonella London (S. London), Salmonella Paratyphi B (S. Paratyphi B) and Salmonella Hadar (S. Hadar). In this work, streptavidin (SA) was utilized as a scaffold to directionally immobilize biotinylated nanobody (BiNb) and Salmonella was detected by phage-displayed nanobodies. The SAB-ELISA can be accomplished within 180 min with a limit of detection (LOD) of 6.31 × 103 colony forming units (CFU) mL-1, 9.15 × 103 CFU mL-1, 4.23 × 103 CFU mL-1, 7.31 × 103 CFU mL-1 and 7.25 × 103 CFU mL-1 towards S. Typhimurium, S. Enteritidis, S. London, S. Paratyphi B and S. Hadar, respectively. In comparison of sandwich ELISA by passive immobilization of Nb-01 on polystyrene plate, the sensitivity was increased by around 6-fold, which confirmed the enhanced immobilization efficacy of SAB-ELISA. Furthermore, the feasibility of the assay for S. Typhimurium determination in actual samples was evaluated, showing excellent recovery, inter-day and intra-day precision.


Asunto(s)
Anticuerpos de Dominio Único , Ensayo de Inmunoadsorción Enzimática , Salmonella enteritidis , Serogrupo , Estreptavidina
17.
BMC Vet Res ; 18(1): 99, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292024

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) genotypes 3 and 4 are zoonotic. In this study, HEV infection in laboratory Bama miniature pigs in Sichuan Province of China was investigated. Firstly, one hundred rectal swabs were collected for HEV RNA testing, and chose positive samples for sequence analysis. Concurrently, for pathogenicity study, six healthy Bama miniature pigs were randomly divided into two groups of 3 pigs each. A total of 500 µL of HEV stock (positive fecal samples identified in this study) was inoculated intravenously into each pig in the experimental group, and the three pigs in the other group served as negative controls. Serum and fecal samples were collected at 1 to 10 weeks post-inoculation (wpi) for alanine aminotransferase (ALT) levels, anti-HEV antibodies and HEV RNA detection, respectively. During necropsies, liver lesions and HEV antigen in liver were observed at 10 wpi. RESULTS: The rate of fecal sample HEV RNA-positivity was 12% (12/100). Sequence comparisons indicated that partial ORF1 and ORF2 gene sequences of this isolate shared highest identities with corresponding sequences of genotype 4a HEV isolates (81.4%-96.1% and 89.9%-97.1%, respectively). Phylogenetic tree analysis further demonstrated that sequences of this isolate clustered together with sub-genotype 4a HEV isolate sequences. Experimentally, the pathogenicity of Bama miniature pigs infected with this isolate exhibited viremia, fecal virus shedding, seroconversion, ALT level increasing, liver lesions and HEV antigen in liver. CONCLUSIONS: This is the first study to confirm that HEV is currently circulating in laboratory Bama miniature pigs in China and this isolate can successfully infect Bama miniature pigs experimentally. More importantly, this study suggested HEV screening of laboratory pigs should be conducted to prevent research personnel from acquiring zoonotic HEV infections.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Enfermedades de los Porcinos , Animales , Heces , Genotipo , Hepatitis E/veterinaria , Filogenia , ARN Viral , Porcinos , Porcinos Enanos/genética , Virulencia
18.
Microbiol Spectr ; 10(1): e0226521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138149

RESUMEN

Avian hepatitis E virus (HEV) causes liver diseases and multiple extrahepatic disorders in chickens. However, the mechanisms involved in avian HEV entry remain elusive. Herein, we identified the RAS-related protein 1b (Rap1b) as a potential HEV-ORF2 protein interacting candidate. Experimental infection of chickens and cells with an avian HEV isolate from China (CaHEV) led to upregulated expression and activation of Rap1b both in vivo and in vitro. By using CaHEV capsid as mimic of virion to treat cell in vitro, it appears that the interaction between the viral capsid and Rap1b promoted cell membrane recruitment of the downstream effector Rap1-interacting molecule (RIAM). In turn, RIAM further enhanced Talin-1 membrane recruitment and retention, which led to the activation of integrin α5/ß1, as well as integrin-associated membrane protein kinases, including focal adhesion kinase (FAK). Meanwhile, FAK activation triggered activation of downstream signaling molecules, such as Ras-related C3 botulinum toxin substrate 1 RAC1 cell division cycle 42 (CDC42), p21-activated kinase 1 (PAK1), and LIM domain kinase 1 (LIMK1). Finally, F-actin rearrangement induced by Cofilin led to the formation of lamellipodia, filopodia, and stress fibers, contributes to plasma membrane remodeling, and might enhance CaHEV virion internalization. In conclusion, our data suggested that Rap1b activation was triggered during CaHEV infection and appeared to require interaction between CaHEV-ORF2 and Rap1b, thereby further inducing membrane recruitment of Talin-1. Membrane-bound Talin-1 then activates key Integrin-FAK-Cofilin cascades involved in modulation of actin kinetics, and finally leads to F-actin rearrangement and membrane remodeling to potentially facilitate internalization of CaHEV virions into permissive cells. IMPORTANCE Rap1b is a multifunctional protein that is responsible for cell adhesion, growth, and differentiation. The inactive form of Rap1b is phosphorylated and distributed in the cytoplasm, while active Rap1b is prenylated and loaded with GTP to the cell membrane. In this study, the activation of Rap1b was induced during the early stage of avian HEV infection under the regulation of PKA and SmgGDS. Continuously activated Rap1b recruited its effector RIAM to the membrane, thereby inducing the membrane recruitment of Talin-1 that led to the activation of membrane α5/ß1 integrins. The triggering of the signaling pathway-associated Integrin α5/ß1-FAK-CDC42&RAC1-PAK1-LIMK1-Cofilin culminated in F-actin polymerization and membrane remodeling that might promote avian HEV virion internalization. These findings suggested a novel mechanism that is potentially utilized by avian HEV to invade susceptible cells.


Asunto(s)
Citoesqueleto/metabolismo , Hepatitis Viral Animal/metabolismo , Hepevirus/patogenicidad , Enfermedades de las Aves de Corral/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , Proteínas de Unión al GTP rap/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Pollos , Citoesqueleto/genética , Citoesqueleto/virología , Hepatitis Viral Animal/genética , Hepatitis Viral Animal/virología , Hepevirus/genética , Interacciones Huésped-Patógeno , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Unión Proteica , Proteínas Virales/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rap/genética
19.
Vet Microbiol ; 265: 109331, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34999311

RESUMEN

Hepatitis E virus (HEV), a zoonotic virus, infects many animal species, including humans. Capsid proteins of human, swine, rabbit and avian HEVs share 48 %-100 % amino acid identity. In the present study, antigenic cross-reactivity among human, swine, rabbit and avian HEV capsid proteins were analyzed in detail using indirect and blocking enzyme-linked immunosorbent assays (ELISAs). The C-terminal 268 amino acids of genotype 1 human, genotype 4 swine, genotype 3 rabbit and genotype B3 avian HEV capsid proteins served as coating antigens for ELISA. Hyperimmune rabbit antisera (against four HEV capsid proteins) and human, pig, rabbit and chicken clinical sera were as primary antibodies. Closely correlated and statistically indistinguishable results were obtained for detection of anti-HEV antibodies in human and pig sera using human, swine and rabbit HEV capsid proteins as coating antigens. Moderately correlated differences in detection of anti-HEV antibodies in rabbit sera were obtained using the three capsid proteins. Statistically significant differences with no correlations were obtained for anti-HEV antibodies detection in chicken sera between avian HEV capsid protein and human, swine and rabbit ones. Blocking ELISA results demonstrated that two common epitopes among the four species HEVs were immunodominant in avian HEV, but were non-immunodominant in human, swine and rabbit HEVs. Nevertheless, three epitopes common to human, swine and rabbit HEVs were all immunodominant epitopes for the three species HEVs. Collectively, these results demonstrate that anti-HEV antibodies in human and pig sera can be detected using human, swine and rabbit HEV capsid proteins. By contrast, for optimal detection of anti-HEV antibodies in rabbit and chicken sera, the respective rabbit and avian HEV capsid proteins should be used. These results provide insights to guide future development of serological assays for diagnosing HEV infections in various animal species.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Hepevirus , Enfermedades de los Porcinos , Animales , Antígenos Virales , Aves , Proteínas de la Cápside/genética , Hepatitis E/veterinaria , Virus de la Hepatitis E/genética , Hepevirus/genética , Humanos , Conejos , Porcinos
20.
Front Microbiol ; 12: 775083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790187

RESUMEN

Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...