Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 376(6592): 483-491, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35482870

RESUMEN

Pleasant touch provides emotional and psychological support that helps mitigate social isolation and stress. However, the underlying mechanisms remain poorly understood. Using a pleasant touch-conditioned place preference (PT-CPP) test, we show that genetic ablation of spinal excitatory interneurons expressing prokineticin receptor 2 (PROKR2), or its ligand PROK2 in sensory neurons, abolishes PT-CPP without impairing pain and itch behaviors in mice. Mutant mice display profound impairments in stress response and prosocial behaviors. Moreover, PROKR2 neurons respond most vigorously to gentle stroking and encode reward value. Collectively, we identify PROK2 as a long-sought neuropeptide that encodes and transmits pleasant touch to spinal PROKR2 neurons. These findings may have important implications for elucidating mechanisms by which pleasant touch deprivation contributes to social avoidance behavior and mental disorders.


Asunto(s)
Percepción del Tacto , Tacto , Animales , Emociones , Humanos , Interneuronas/fisiología , Ratones , Células Receptoras Sensoriales , Percepción del Tacto/fisiología
2.
Elife ; 102021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919054

RESUMEN

Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here, we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCß-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice.


An itch is a common sensation that makes us want to scratch. Most short-term itches are caused by histamine, a chemical that is released by immune cells following an infection or in response to an allergic reaction. Chronic itching, on the other hand, is not usually triggered by histamine, and is typically the result of neurological or skin disorders, such as atopic dermatitis. The sensation of itching is generated by signals that travel from the skin to nerve cells in the spinal cord. Studies in mice have shown that the neuropeptides responsible for delivering these signals differ depending on whether or not the itch involves histamine: GRPs (short for gastrin-releasing proteins) convey histamine-independent itches, while NMBs (short for neuromedin B) convey histamine-dependent itches. It has been proposed that another neuropeptide called BNP (short for B-type natriuretic peptide) is able to transmit both types of itch signals to the spinal cord. But it remains unclear how this signaling molecule is able to do this. To investigate, Meng, Liu, Liu, Liu et al. carried out a combination of behavioral, molecular and pharmacological experiments in mice and nerve cells cultured in a laboratory. The experiments showed that BNP alone cannot transmit the sensation of itching, but it can boost itching signals that are triggered by histamine. It is widely believed that BNP activates a receptor protein called NPRA. However, Meng et al. found that the BNP actually binds to another protein which alters the function of the receptor activated by NMBs. These findings suggest that BNP modulates rather than initiates histamine-dependent itching by enhancing the interaction between NMBs and their receptor. Understanding how itch signals travel from the skin to neurons in the spinal cord is crucial for designing new treatments for chronic itching. The work by Meng et al. suggests that treatments targeting NPRA, which was thought to be a key itch receptor, may not be effective against chronic itching, and that other drug targets need to be explored.


Asunto(s)
Péptido Natriurético Encefálico/genética , Neuroquinina B/análogos & derivados , Prurito/genética , Receptores del Factor Natriurético Atrial/genética , Transducción de Señal , Animales , Ganglios Espinales/metabolismo , Células HEK293 , Histamina/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Péptido Natriurético Encefálico/metabolismo , Neuroquinina B/genética , Neuroquinina B/metabolismo , Prurito/fisiopatología , Receptores del Factor Natriurético Atrial/metabolismo , Médula Espinal/metabolismo
3.
Nat Commun ; 11(1): 5074, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033265

RESUMEN

Touch and itch sensations are crucial for evoking defensive and emotional responses, and light tactile touch may induce unpleasant itch sensations (mechanical itch or alloknesis). The neural substrate for touch-to-itch conversion in the spinal cord remains elusive. We report that spinal interneurons expressing Tachykinin 2-Cre (Tac2Cre) receive direct Aß low threshold mechanoreceptor (LTMR) input and form monosynaptic connections with GRPR neurons. Ablation or inhibition markedly reduces mechanical but not acute chemical itch nor noxious touch information. Chemogenetic inhibition of Tac2Cre neurons also displays pronounced deficit in chronic dry skin itch, a type of chemical itch in mice. Consistently, ablation of gastrin-releasing peptide receptor (GRPR) neurons, which are essential for transmitting chemical itch, also abolishes mechanical itch. Together, these results suggest that innocuous touch and chemical itch information converge on GRPR neurons and thus map an exquisite spinal circuitry hard-wired for converting innocuous touch to irritating itch.


Asunto(s)
Red Nerviosa/fisiopatología , Prurito/fisiopatología , Tacto/fisiología , Animales , Conducta Animal , Inyecciones Espinales , Luz , Potenciales de la Membrana , Ratones Endogámicos C57BL , Neuronas/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Bombesina/metabolismo , Piel/patología , Médula Espinal/fisiopatología , Sinapsis/metabolismo , Taquicininas/metabolismo
4.
JCI Insight ; 5(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32960817

RESUMEN

Recently programmed death-ligand 1 (PD-L1) receptor PD-1 was found in dorsal root ganglion (DRG) neurons, and PD-L1 activates PD-1 to inhibit inflammatory and neuropathic pain by modulating neuronal excitability. However, the downstream signaling of PD-1 in sensory neurons remains unclear. Here, we show that PD-L1 activated Src homology 2 domain-containing tyrosine phosphatase-1 (SHP-1) to downregulate transient receptor potential vanilloid 1 (TRPV1) in DRG neurons and inhibit bone cancer pain in mice. Local injection of PD-L1 produced analgesia. PD-1 in DRG neurons colocalized with TRPV1 and SHP-1. PD-L1 induced the phosphorylation of SHP-1 in DRG TRPV1 neurons and inhibited TRPV1 currents. Loss of TRPV1 in mice abolished bone cancer-induced thermal hyperalgesia and PD-L1 analgesia. Conditioned deletion of SHP-1 in NaV1.8+ neurons aggravated bone cancer pain and diminished the inhibition of PD-L1 on TRPV1 currents and pain. Together, our findings suggest that PD-L1/PD-1 signaling suppresses bone cancer pain via inhibition of TRPV1 activity. Our results also suggest that SHP-1 in sensory neurons is an endogenous pain inhibitor and delays the development of bone cancer pain via suppressing TRPV1 function.


Asunto(s)
Antígeno B7-H1/genética , Dolor en Cáncer/genética , Neuralgia/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Canales Catiónicos TRPV/genética , Analgesia/métodos , Animales , Neoplasias Óseas/complicaciones , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Dolor en Cáncer/complicaciones , Dolor en Cáncer/patología , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Inflamación/complicaciones , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.8/genética , Neuralgia/complicaciones , Neuralgia/patología , Receptor de Muerte Celular Programada 1/genética , Células Receptoras Sensoriales/patología
5.
Nat Commun ; 11(1): 1397, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170060

RESUMEN

Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission.


Asunto(s)
Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/metabolismo , Dolor/metabolismo , Prurito/metabolismo , Células Receptoras Sensoriales/metabolismo , Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Histamina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotransmisores , Dolor/patología , Prurito/patología , Células Receptoras Sensoriales/patología , Piel/metabolismo , Piel/patología , Transcriptoma
6.
Neurosci Bull ; 32(5): 445-54, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27631681

RESUMEN

Given that lysophosphatidic acid (LPA) and the tetrodotoxin-resistant sodium channel Nav1.8 are both involved in bone cancer pain, the present study was designed to investigate whether crosstalk between the LPA receptor LPA1 (also known as EDG2) and Nav1.8 in the dorsal root ganglion (DRG) contributes to the induction of bone cancer pain. We showed that the EDG2 antagonist Ki16198 blocked the mechanical allodynia induced by intrathecal LPA in naïve rats and attenuated mechanical allodynia in a rat model of bone cancer. EDG2 and Nav1.8 expression in L4-6 DRGs was upregulated following intrathecal or hindpaw injection of LPA. EDG2 and Nav1.8 expression in ipsilateral L4-6 DRGs increased with the development of bone cancer. Furthermore, we showed that EDG2 co-localized with Nav1.8 and LPA remarkably enhanced Nav1.8 currents in DRG neurons, and this was blocked by either a protein kinase C (PKC) inhibitor or a PKCε inhibitor. Overall, we demonstrated the modulation of Nav1.8 by LPA in DRG neurons, and that this probably underlies the peripheral mechanism by which bone cancer pain is induced.


Asunto(s)
Neoplasias Óseas/complicaciones , Dolor en Cáncer/etiología , Dolor en Cáncer/metabolismo , Carcinoma/complicaciones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Lisofosfolípidos/toxicidad , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Animales , Biofisica , Dolor en Cáncer/patología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Isoxazoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Dimensión del Dolor , Técnicas de Placa-Clamp , Propionatos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores del Ácido Lisofosfatídico/metabolismo
7.
Mol Brain ; 8: 15, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25761941

RESUMEN

BACKGROUND: Systemically administered dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonists, produces analgesia and sedation. Peripherally restricted α2-AR antagonist could block the analgesic effect of systemic DEX on neuropathic pain, with no effect on sedation, indicating peripheral analgesic effect of DEX. Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 play important roles in the conduction of nociceptive sensation. Both α2-AR and Nav1.8 are found in small nociceptive DRG neurons. We, therefore, investigated the effects of DEX on the Nav1.8 currents in acutely dissociated small-diameter DRG neurons. RESULTS: Whole-cell patch-clamp recordings demonstrated that DEX concentration-dependently suppressed TTX-R Nav1.8 currents in small-diameter lumbar DRG neurons. DEX also shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction and increased the threshold of action potential and decrease electrical and chemical stimuli-evoked firings in small-diameter DRG neurons. The α2-AR antagonist yohimbine or α2A-AR antagonist BRL44408 but not α2B-AR antagonist imiloxan blocked the inhibition of Nav1.8 currents by DEX. Immunohistochemistry results showed that Nav1.8 was predominantly expressed in peripherin-positive small-diameter DRG neurons, and some of them were α2A-AR-positive ones. Our electrophysiological recordings also demonstrated that DEX-induced inhibition of Nav1.8 currents was prevented by intracellular application of G-protein inhibitor GDPß-s or Gi/o proteins inhibitor pertussis toxin (PTX), and bath application of adenylate cyclase (AC) activator forskolin or membrane-permeable cAMP analogue 8-Bromo-cAMP (8-Br-cAMP). PKA inhibitor Rp-cAMP could mimic DEX-induced inhibition of Nav1.8 currents. CONCLUSIONS: We established a functional link between α2-AR and Nav1.8 in primary sensory neurons utilizing the Gi/o/AC/cAMP/PKA pathway, which probably mediating peripheral analgesia of DEX.


Asunto(s)
Dexmedetomidina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Ganglios Espinales/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Neuronas/metabolismo , Tetrodotoxina/farmacología , Potenciales de Acción , Animales , Ganglios Espinales/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Ratas Wistar , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal/efectos de los fármacos
8.
J Neurosci ; 33(49): 19099-111, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24305807

RESUMEN

Pain is the most common symptom of bone cancer. TGF-ß, a major bone-derived growth factor, is largely released by osteoclast bone resorption during the progression of bone cancer and contributes to proliferation, angiogenesis, immunosuppression, invasion, and metastasis. Here, we further show that TGF-ß1 is critical for bone cancer-induced pain sensitization. We found that, after the progression of bone cancer, TGF-ß1 was highly expressed in tumor-bearing bone, and the expression of its receptors, TGFßRI and TGFßRII, was significantly increased in the DRG in a rat model of bone cancer pain that is based on intratibia inoculation of Walker 256 mammary gland carcinoma cells. The blockade of TGF-ß receptors by the TGFßRI antagonist SD-208 robustly suppressed bone cancer-induced thermal hyperalgesia on post-tumor day 14 (PTD 14). Peripheral injection of TGF-ß1 directly induced thermal hyperalgesia in intact rats and wide-type mice, but not in Trpv1(-/-) mice. Whole-cell patch-clamp recordings from DRG neurons showed that transient receptor potential vanilloid (TRPV1) sensitivity was significantly enhanced on PTD 14. Extracellular application of TGF-ß1 significantly potentiated TRPV1 currents and increased [Ca(2+)]i in DRG neurons. Pharmacological studies revealed that the TGF-ß1 sensitization of TRPV1 and the induction of thermal hyperalgesia required the TGF-ßR-mediated Smad-independent PKCε and TGF-ß activating kinase 1-p38 pathways. These findings suggest that TGF-ß1 signaling contributes to bone cancer pain via the upregulation and sensitization of TRPV1 in primary sensory neurons and that therapeutic targeting of TGF-ß1 may ameliorate the bone cancer pain in advanced cancer.


Asunto(s)
Neoplasias Óseas/complicaciones , Hiperalgesia/fisiopatología , Sistema Nervioso Periférico/fisiopatología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Conducta Animal/fisiología , Western Blotting , Carcinoma 256 de Walker/patología , Fenómenos Electrofisiológicos , Femenino , Hiperalgesia/etiología , Inmunohistoquímica , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/fisiología , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Proteína Quinasa C/fisiología , Ratas , Ratas Wistar , Proteínas Smad/genética , Proteínas Smad/fisiología , Canales Catiónicos TRPV/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...