Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 116: 154901, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37247587

RESUMEN

BACKGROUND: Macrophages M1 polarization involved in the process of renal inflammatory injury, is a well-established hallmark of chronic kidney disease (CKD). Paeoniflorin (PF), a water-soluble monoterpene glycoside extracted from Paeonia lactiflora, revealed renal anti-inflammatory activities in our previous study. However, the potential molecular mechanism of PF on CKD remains unknown. PURPOSE: The present study aims to investigate the regulation of PF on macrophage polarization in CKD. METHODS: A CKD model was established by cationic bovine serum albumin and a murine macrophage cell line RAW264.7 induced with lipopolysaccharide (LPS) were used to clarify the underlying mechanisms of PF in CKD. RESULTS: Results showed that PF exhibited favorable protective effects on CKD model mice by promoting renal function, ameliorating renal pathological injury and podocyte damage. Furthermore, PF inhibited the infiltration of M1 macrophage marker CD68 and iNOS in kidney tissue, but increased the proportion of M2 macrophage marker CD206. In RAW264.7 cells stimulated with LPS, the levels of cytokines including IL-6, IL-1ß, TNF-α, MCP-1 were lessened under PF treatment, while the levels of Arg1, Fizz1, IL-10 and Ym-1 were augmented. These results indicated that PF promoted macrophage polarization from M1 to M2 in vivo and in vitro. More importantly, PF repaired the damaged mitochondria through increasing mitochondrial membrane potential and reducing ROS accumulation. The mitophagy-related proteins PINK1, Parkin, Bnip3, P62 and LC3 were up-regulated by PF, accompanied by the incremental expressions of Krüppel-like transcription factor 4 (KLF4). Moreover, the promotion of mitophagy and inhibition of M1 macrophage polarization owing to PF were reversed by mitophagy inhibitor Mdivi-1 or silencing KLF4. CONCLUSION: Overall, PF suppressed renal inflammation by promoting macrophage polarization from M1 to M2 and inducing mitophagy via regulating KLF4. It is expected to provide a new strategy for exploring the effects of PF in treating CKD.


Asunto(s)
Nefritis , Insuficiencia Renal Crónica , Ratones , Animales , Lipopolisacáridos/farmacología , Mitofagia , Macrófagos , Nefritis/patología , Riñón/patología , Monoterpenos/farmacología , Inflamación/metabolismo
2.
Phytother Res ; 37(1): 310-328, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36086867

RESUMEN

Prostate cancer (PCa) is the most common malignant tumor in males, which frequently develops into castration-resistant prostate cancer (CRPC) with limited therapies. Gambogenic acid (GNA), a flavonoids compound isolated from Gamboge, exhibits anti-tumor capacity in various cancers. Our results showed that GNA revealed not only antiproliferative and pro-apoptotic activities but also the induction of autophagy in PCa cells. In addition, autophagy inhibitor chloroquine enhanced the pro-apoptosis effect of GNA. Moreover, the activation of JNK pathway and the induction of apoptosis and autophagy triggered by GNA were attenuated by JNK inhibitor SP600125. We also found that GNA significantly promoted reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress. Meanwhile, suppressing ER stress with 4-phenylbutyric acid (4-PBA) markedly blocked the activation of JNK pathway induced by GNA. Further research indicated that ROS scavenger N-acetyl-L-cysteine (NAC) effectively abrogated ER stress and JNK pathway activation induced by GNA. Furthermore, NAC and 4-PBA significantly reversed GNA-triggered apoptosis and autophagy. Finally, GNA remarkably suppressed prostate tumor growth with low toxicity in vivo. In conclusion, the present study revealed that GNA induced apoptosis and autophagy through ROS-mediated ER stress via JNK signaling pathway in PCa cells. Thus, GNA might be a promising therapeutic drug against PCa.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias de la Próstata , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Autofagia , Línea Celular Tumoral , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Neoplasias de la Próstata/tratamiento farmacológico
3.
Eur J Pharmacol ; 929: 175136, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792172

RESUMEN

Activation of inflammation is an important pathogenic factor contributing to the development of chronic kidney disease (CKD). Recent studies manifested the implication of impaired mitophagy mediated NLRP3 inflammasome activation in the progression of CKD. Mitochondria-targeted antioxidant mitoTEMPO showed antioxidant and anti-inflammatory properties in kidney disease. This study aims to investigate the protective mechanism of mitoTEMPO on podocyte injury related to mitophagy and NLRP3 inflammasome. Our results showed that mitoTEMPO obviously ameliorated renal function and podocyte injury in CKD model rats induced by cationic bovine serum albumin (C-BSA). More importantly, mitoTMEPO significantly inhibited NLRP3 inflammasome activation compared with CKD model rats (P < 0.01). In vitro, TNF-α damaged human podocyte cells (HPC) and activated NLRP3 inflammasome, which was rescued by NLRP3 inhibitor and mitoTEMPO. Meanwhile, mitoTEMPO lessened excessive mitochondrial ROS (mtROS) and degressive mitochondrial membrane potential (MMP) in HPC. We also found that mitoTEMPO induced mitophagy in vivo and in vitro. Moreover, silenced Parkin dramatically reserved the inhibitory effect of mitoTEMPO on NLRP3 inflammasome. Taking together, these findings reveal that mitoTEMPO ameliorated podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy. MitoTEMPO may be a new candidate to protect against podocyte injury in CKD.


Asunto(s)
Podocitos , Insuficiencia Renal Crónica , Animales , Antioxidantes/farmacología , Humanos , Inflamasomas , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Compuestos Organofosforados , Piperidinas , Proteínas Quinasas , Ratas , Especies Reactivas de Oxígeno , Ubiquitina-Proteína Ligasas
4.
Bioengineered ; 13(5): 13956-13969, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723058

RESUMEN

The abnormal proliferation and inflammatory response of the mesangial cells play a crucial role in the progression of membranous nephropathy (MN). Herein, this study aimed to investigate the therapeutic effect of Salvianolic acid B (SalB) on MN-induced mesangial abnormalities and its underlying mechanisms. MN models were established in cationic bovine serum albumin-induced Sprague-Dawley rats and lipopolysaccharide-induced human mesangial cells (HMCs). Following SalB and microRNA-145-5p antagomir treatment, kidney function was investigated by 24-hours urine protein, serum creatinine, and blood urea nitrogen. Pathological changes of kidney were investigated by Periodic acid Schiff staining. CD68 and IgG were detected by immunofluorescence in glomerulus. Mesangial autophagosomes were observed by transmission electron microscope. MicroRNA-145-5p inhibitor, mimic, LY294002, and SalB were used to treat with HMCs. In kidney and HMCs, IL-1 ß, IL-2, IL-6, TNF-α and microRNA-145-5p was detected by quantitative real-time PCR. Phosphatidylinositol 3-kinase (PI3K), phosphorylated AKT, AKT, beclin1, and microtubule-associated protein light chain 3 (LC3) levels were detected by Western blot. HMCs proliferation and cycle were detected by Cell Counting Kit-8 and flow cytometry. LC3 were detected by LC3-dual-fluorescent adenovirus in HMCs. Our results showed that SalB significantly ameliorated kidney function and pathological changes. Furthermore, it significantly alleviated proliferation, inflammation and activated autophagy in mesangial cells. Moreover, microRNA-145-5p antagomir accentuated MN while microRNA-145-5p inhibitor and LY294002 encouraged proliferation and inflammation through PI3K/AKT pathway in HMCs. Collectively, our study demonstrated that SalB activated renal autophagy to reduce cell proliferation and inflammation of MN, which was mediated by microRNA-145-5p to inhibit PI3K/AKT pathway, and ultimately attenuated MN.


Asunto(s)
Glomerulonefritis Membranosa , MicroARNs , Animales , Antagomirs , Autofagia , Benzofuranos , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/genética , Inflamación , Riñón/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
5.
JCO Precis Oncol ; 6: e2100325, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171661

RESUMEN

PURPOSE: Human epidermal growth factor receptor 2 (HER2) belongs to the same family as epidermal growth factor receptor (EGFR) and is known as an important cancer driver gene. Insertions and deletions (indels) are frequent driver mutations in both EGFR and HER2. The most common HER2 indels are the exon 20 insertions within the kinase domain, while others are rarely reported. Our study aimed to investigate other indels of HER2 that may act as driver mutations in Chinese patients with different cancer types. METHODS: In this retrospective study, patient samples were subjected to targeted sequencing covering HER2 and other cancer-related genes. Mutation profiles of patients harboring HER2 exon 18/19 indels were described. Identified HER2 exon 18/19 indels in our study were compared with external data from COSMIC. In silico and in vitro analyses were performed on selected indels of HER2 exon 18 and 19, respectively. RESULTS: A total of 25 indels in HER2 exon 18/19, 17 of which being recurrent, were identified in 20 of 53,591 patients with lung cancer (0.037%), two of 5,888 patients with colorectal cancer (0.034%), two of 3,774 patients with breast cancer (0.053%), and one of 14 patients with urothelial carcinoma of the renal pelvis (7.1%). Most patients harboring HER2 exon 18/19 indels were absent of known driver mutations. In lung cancer, mutation profiles were comparable between patients carrying HER2 exon 18/19 indels and the two established HER2 drivers (exon 20 insertions and S310 mutations). The in silico and in vitro analyses suggested an activated state conferred by HER2 exon 18/19 indels, which could be targeted by different tyrosine kinase inhibitors. CONCLUSION: Our study revealed a class of rare but unique indels in HER2 exon 18/19, which may act as driver mutations in several cancer types.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Transicionales , Exones , Neoplasias Pulmonares , Neoplasias de la Vejiga Urinaria , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Transicionales/genética , Exones/genética , Humanos , Neoplasias Pulmonares/genética , Receptor ErbB-2/genética , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/genética
6.
Ann Transl Med ; 9(2): 129, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33569431

RESUMEN

BACKGROUND: Mutations in POLE /POLD1 proofreading domain can cause deficiencies in DNA repair, conferring ultramutated cancer phenotypes. Preliminary clinical studies have revealed an association between POLE/POLD1 mutations and beneficial clinical outcomes to immune checkpoint inhibitor (ICI) therapy This study aims to investigate the genomic characteristics of POLE/POLD-mutant tumors and the prognostic value of POLE/POLD mutation for ICI treatment. METHODS: Genomic data of 21,074 patients with 23 cancer types were retrieved from Burning Rock variant database (BR VarDB). The prevalence and spectra of POLE and POLD1 mutations were assessed and compared with that in The Cancer Genome Atlas (TCGA) samples. The correlations of POLE/POLD1 mutation with tumor mutational burden (TMB) and microsatellite instability (MSI) were investigated. The prognostic value of POLE/POLD1 mutations was also explored in 2,487 ICI-treated patients from published studies. RESULTS: BR VarDB samples displayed a similar mutational prevalence of POLE (3.2% vs. 3.2%) and POLD1 (1.4% vs. 1.6%, P=0.248) versusTCGA samples, but a slightly lower frequency of POLE and POLD1 co-mutations (0.21% vs. 0.43%, P<0.001). POLE/POLD1-mutant tumors harbored increased TCT→TAT and TCG→TTG transversions, and genomic signatures associated with DNA mismatch repair (MMR) deficiency and ultra-hypermuation. Furthermore, tumors with POLE/POLD1 proofreading mutation showed a significantly higher TMB than tumors with non-proofreading mutations (P<0.01), although both possessed a higher TMB than POLE/POLD1 wild-type (WT) tumors (P<0.0001 and P<0.0001, respectively). MSI was commonly observed in tumors harboring dominant clone of POLE/POLD1 mutation (10.2%), but occurred rarely in POLE/POLD1 WT tumors (0.5%) and tumors with accumulating sub-cloned POLE/POLD1 mutation (0%). Survival analysis revealed that POLE/POLD1 mutation was not independently correlated with longer survival after adjusting for TMB and other factors (HR =0.86, P=0.372). However, patients harboring POLE/POLD1 mutation demonstrated a higher response rate than patients with POLE/ POLD1 WT tumors (35.2% vs. 19.6%, P=0.0165). CONCLUSIONS: We delineated distinctive genomic characteristics in POLE/POLD1-mutant tumors, suggesting the potential predictive role of POLE/POLD1 mutations, especially those in the proofreading domain, for beneficial outcomes of immunotherapy. Our results also suggest that MSI caused by a loss-of-function mutation in the MMR pathway tends to result from POLE/POLD1 proofreading deficiency in POLE/POLD1-mutant tumors with MSI.

7.
Front Pharmacol ; 12: 777670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35757387

RESUMEN

Chronic glomerulonephritis (CGN) is one of the major causes of end-stage kidney disease. Zhen-wu-tang (ZWT), as a famous Chinese herbal prescription, is widely used in China for CGN therapy in clinic. However, the mechanism of ZWT in CGN has not been fully understood. The present study explored the therapeutic effect and the underlying mechanism of ZWT on mitochondrial function in cationic bovine serum albumin (C-BSA)-induced CGN model rats and tumor necrosis factor (TNF-α)-damaged mouse podocytes. The renal functions were measured by serum creatinine (Scr) and blood urea nitrogen (BUN). Renal pathological changes and ultrastructure of kidney tissues were evaluated by periodic acid-Schiff (PAS) staining and transmission electron microscopy. The levels of antioxidases, including mitochondrial catalase (CAT), superoxide dismutase 2 (SOD2), and peroxiredoxin 3 (PRDX3), in CGN rats were examined by real-time PCR. The mitochondrial functions of podocytes were measured by ATP concentration, mitochondrial membrane potential (MMP), and mitochondrial ROS (mtROS). For mitophagy level detection, the expressions of mitophagy-related proteins, including LC3, p62, heat shock protein 60 (HSP60), and translocase of outer mitochondrial membrane 20 (TOMM20), were measured by Western blot, as the colocation of LC3 and mitochondrial marker COX IV were evaluated by immunofluorescence. Our results manifested that ZWT ameliorated CGN model rats by a remarkable decrease in Scr and BUN, inhibition of mesangial matrix proliferation, protection against foot processes fusion, and basement membrane thickening. More importantly, ZWT protected against mitochondrial dysfunction by increasing the expressions of CAT, SOD2, and PRDX3 in CGN model rats, increased ATP content and MMP in podocytes, and decreased excessive mtROS. Furthermore, ZWT induced mitophagy in CGN through increasing the expression of LC3, and decreasing p62, HSP60, TOMM20, and ZWT also enhanced the colocation of LC3 to the mitochondria. We found that ZWT inhibited the PI3K/AKT/mTOR pathway, which could be disturbed by PI3K inhibitor LY294002 and agonist insulin-like growth factor 1. Moreover, ZWT reversed the inhibition of the AMPK pathway in CGN. Overall, ZWT ameliorated renal mitochondrial dysfunction probably by inducing mitophagy via the PI3K/AKT/mTOR and AMPK pathways.

8.
Front Pharmacol ; 11: 541426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013384

RESUMEN

Acute kidney injury (AKI) is a serious disease characterized by a rapid decline in kidney function. Oxidative stress is the primary pathogenesis of AKI. Salvianolic acid B (SalB), a water-soluble compound extracted from Salvia miltiorrhiza, possesses a potent antioxidant activity. Here, we investigated the protective effect of SalB against renal ischemia-reperfusion injury (I/R) in mice. Briefly, by analyzing renal function, oxidative stress markers and inflammatory biomarkers, we found that SalB could improve kidney damage, reduce oxidative stress and inflammatory factor levels. Interestingly, the expression of the NLR family pyrin domain-containing 3 (NLRP3), caspase-1, pyroptosis related proteins gasdermin D (GSDMD) and interleukin (IL)-1ß, which were significantly upregulated in the kidney tissues of I/R group, was effectively reversed by SalB. Meanwhile, renal tubular epithelial cells hypoxia and reoxygenation model was used to explore pyroptosis of caspase-1-dependent. Further mechanism study showed that the SalB pretreatment could promote the increase of nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear accumulation, which significantly suppressed oxidative stress, proinflammatory cytokines, NLRP3 inflammasome activation and pyroptosis. These results indicate that SalB can inhibit caspase-1/GSDMD-mediated pyroptosis by activating Nrf2/NLRP3 signaling pathway, resulting in alleviating I/R injury in mice.

9.
Front Pharmacol ; 11: 1080, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765277

RESUMEN

Immunoglobulin A nephropathy (IgAN) is one of the most frequent kinds of primary glomerulonephritis characterized by IgA immune complexes deposition and glomerular proliferation. Zhen-wu-tang (ZWT), a well-known traditional Chinese formula has been reported to ameliorate various kidney diseases. However, its pharmacological mechanism remains unclear. Exosomes have been described in diverse renal diseases by mediating cellular communication but rarely in the IgAN. The purpose of the present study is to explore whether the underlying mechanisms of the effect of ZWT on IgAN is correlated to exosomes. Our results demonstrated that in human renal tubular epithelial cells (HK-2) stimulated by lipopolysaccharide, exosomes are obviously released after ZWT-containing serum treatment especially with 10% ZWT. In addition, once released, HK-2-derived exosomes were uptaked by human mesangial cells (HMC), which impeded the activation of NF-κB/NLRP3 signaling pathway to exert anti-inflammatory effects in a lipopolysaccharide induced proliferation model. Moreover, IgAN rat model was established by bovine serum albumin, CCL4 mixed solution and LPS. We found that 10% ZWT could significantly promote the release of exosomes from HK-2 and inhibit HMC proliferation to improve inflammation. Thus HK-2-derived exosomes treated with 10% ZWT (ZWT-EXO) were administered to the rats by tail vein injection. Our results showed that ZWT-EXO decreased the levels of 24 h proteinuria, urinary erythrocyte, IgA deposition in glomerulus and renal pathological injury which ameliorated the kidney damage. In addition, ZWT was able to dramatically promote secretion of exosomes in renal tissues while blocked NF-κB nuclear translocation as well as activation of NLRP3 inflammasome, leading to the inhibition of IL-1ß and caspase-1. In conclusion, our study reveal that ZWT has protective effects on IgAN by regulating exosomes secretion to inhibit the activation of NF-κB/NLRP3 pathway, thereby attenuating the renal dysfunction. These findings may provide a new therapeutic target for the treatment of IgAN.

10.
Phytother Res ; 34(12): 3236-3248, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32726508

RESUMEN

Astragaloside IV(AS-IV), a saponin purified from Astragalus membranaceus (Fisch.) Bge.var.mongholicus (Bge.) Hsiao, has been widely used in traditional Chinese medicine. However, the underlying mechanisms in treating chronic glomerular nephritis (CGN) have not been fully understood. The aim of the present study was to evaluate the potential mechanism of AS-IV on CGN. CGN rats were administrated with AS-IV at 10 mg·kg-1 ·d-1 (ASL) and 20 mg·kg-1 ·d-1 (ASH). Twenty four hour proteinuria, blood urea nitrogen (BUN), and serum creatinine (SCr) were detected. Hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining were performed to evaluate the kidney lesion. Transmission electron microscope and GFP-RFP-LC3 transfection assay were used to monitor the effect of AS-IV on autophagy. IL-6 and IL-1ß were detected. The expression of CyclinD1, PI3K/AKT/AS160 pathway and autophagy related proteins were detected by Western Blot. The results demonstrated that AS-IV improved kidney function, ameliorated kidney lesion, and diminished inflammatory in CGN rats. Further, both in vivo and vitro study demonstrated that AS-IV inhibited the proliferation of mesangial cells. AS-IV further displayed a remarkable effect on inhibiting the activation of PI3K/AKT/AS160 pathway and improved the activation of autophagy in vivo and vitro. These results suggested that AS-IV is a potential therapeutic agent for CGN and merits further investigation.


Asunto(s)
Autofagia/efectos de los fármacos , Glomerulonefritis/prevención & control , Insuficiencia Renal Crónica/prevención & control , Saponinas/farmacología , Triterpenos/farmacología , Animales , Astragalus propinquus/química , Células Cultivadas , Citoprotección/efectos de los fármacos , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos
11.
Biomed Pharmacother ; 128: 110241, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32450523

RESUMEN

Renal fibrosis is a kind of progressive kidney disease leading to end-stage renal damage. Epithelial-mesenchymal transition (EMT) is one of the crucial features of renal fibrosis. Salvianolic acid B (SalB), isolated from traditional Chinese medicine Radix Salviae miltiorrhizae, has been proved to be suitable for renal protection. The aims of this study are to investigate the pharmacological effects of SalB on renal fibrosis and explore the underlying mechanisms. In vivo, our study showed that SalB could improve kidney dysfunction and reduce the expression of EMT-related proteins, including fibronectin (FN), α-smooth muscle actin (α-SMA) and transforming growth factor-ß (TGF-ß). In addition, SalB activated autophagy and up-regulated the expression of Sirt1. In vitro, our study showed that SalB reversed EMT in TGF-ß1-induced human kidney proximal tubular epithelial cells (HK-2 cells). Further mechanism studies showed that the inhibition of Sirt1 and autophagy could reverse the protective effect of SalB on the EMT process in TGF-ß1-induced HK-2 cells. Taken together, this study demonstrated that SalB attenuates EMT in the process of renal fibrosis through activating Sirt1-mediated autophagy, and Sirt1 could be a key target for treatment of renal fibrosis.


Asunto(s)
Autofagia/efectos de los fármacos , Benzofuranos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Sirtuina 1/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Fibronectinas/metabolismo , Fibrosis , Humanos , Riñón/enzimología , Riñón/ultraestructura , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
12.
Front Pharmacol ; 11: 606689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584283

RESUMEN

Immunoglobulin A nephropathy (IgAN), an autoimmune renal disease with complicated pathogenesis, is one of the principal reasons for end-stage renal disease in the clinic. Evidence has linked apparent alterations in the components of the microbiome and metabolome to renal disease in rats. However, thus far, there is insufficient evidence that supports the potential relationship between gut microbiome, circulating metabolites, and IgAN. This study was designed to probe the effects of IgAN on intestinal microecology and metabolic phenotypes and to understand the possible underlying mechanisms. Fecal and serum samples were collected from IgAN rats. Composition of the gut microbiota and biochemical changes in the metabolites was analyzed using 16S rDNA sequencing and untargeted metabolomics. The IgAN rats exhibited renal insufficiency and increased concentration of 24-h urine protein, in addition to deposition of IgA and IgG immune complexes in the kidney tissues. There was a disturbance in the balance of gut microbiota in IgAN rats, which was remarkably associated with renal damage. Marked changes in microbial structure and function were accompanied by apparent alterations in 1,403 serum metabolites, associated with the disorder of energy, carbohydrate, and nucleotide metabolisms. Administration of Zhen Wu Tang ameliorated microbial dysbiosis and attenuated the renal damage. Besides, treatment with Zhen Wu Tang modulated the metabolic phenotype perturbation in case of gut microbiota dysbiosis in IgAN rats. In conclusion, these findings provided a comprehensive understanding of the potential relationship between the intestinal microbiota and metabolic phenotypes in rats with IgAN. Elucidation of the intestinal microbiota composition and metabolic signature alterations could identify predictive biomarkers for disease diagnosis and progression, which might contribute to providing therapeutic strategies for IgAN.

13.
Front Pharmacol ; 10: 978, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551783

RESUMEN

Mesangial proliferative glomerulonephritis (MPGN) is the most common type of chronic kidney disease in China, characterized by mesangial cell proliferation and inflammatory response. Paeoniflorin, an effective composition extracted from Radix Paeoniae Alba, has been used for various kinds of kidney diseases. However, there are no studies reporting the effects of paeoniflorin on MPGN. The present study aims to investigate whether paeoniflorin plays a role in MPGN and confirm the underlying molecular mechanisms. Our results manifested that paeoniflorin strongly restrained 24 h urinary protein and promoted renal function and dyslipidemia in a MPGN rat model. Moreover, paeoniflorin attenuated mesangial cell proliferation and inflammation both in MPGN rats and human mesangial cells (HMCs) treated with lipopolysaccharide (LPS). In detail, paeoniflorin decreased the number of mesangial cells and expressions of proliferation marker Ki67 in MPGN rats. Paeoniflorin also inhibited HMC proliferation and blocked cell cycle progression. In addition, the contents of inflammatory factors and the expressions of macrophage marker iNOS were decreased after paeoniflorin treatment. Furthermore, we found that the protective effect of paeoniflorin was accompanied by a strong inhibition of the phosphatidylinositol 3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3ß pathway. Paeoniflorin enhanced the inhibitory effect of PI3K inhibitor LY294002 and suppressed the activated effect of PI3K agonist insulin-like growth factor 1 (IGF-1) on PI3K/AKT/GSK-3ß pathway. In conclusion, these results demonstrated that paeoniflorin ameliorates MPGN by inhibiting mesangial cell proliferation and inflammatory response through the PI3K/AKT/GSK-3ß pathway.

14.
Biochem Pharmacol ; 169: 113619, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31465776

RESUMEN

Immunoglobulin A nephropathy (IgAN) is an autoimmune kidney disease with complex pathogenesis leading to end-stage renal damage. The prime pathological characteristics of IgAN are IgA immune complexes deposition accompany with mesangial cell proliferation and urine protein elevation. Artemisinin (ART) is extracted from traditional Chinese medicine Artemisia annua L. Hydroxychloroquine (HCQ) is a classical antimalarial drug applied in the treatment of autoimmune diseases. Both of them possess anti-inflammatory and immunomodulatory properties. The purpose of this research was to investigate the pharmacological effects of ART combined with HCQ (AH) and discuss thoroughly the potential molecular mechanisms in IgAN. In vivo, our results demonstrated that AH could efficiently ameliorate kidney damage by improving kidney dysfunction and reducing the levels of 24 h urine protein, IgA and IgG immune complexes deposition in glomerulus of IgAN rats. Interestingly, AH obviously promoted the secretion of exosomes in renal tissues, inhibited the expressions of nuclear factor-κB (NF-κB) signaling and NLRP3 inflammasome-related proteins, including IκB-α, p-p65, NLRP3, ASC, IL-1ß and caspase-1 in IgAN rats. In vitro, further mechanistic study illustrated that exosomes derived from human renal tubular epithelial cells (HK-2) were significantly enhanced by AH, which could be utterly taken up in human mesangial cells (HMCs) and inhibited the activation of NF-κB pathway and NLRP3 inflammasome after AH intervention. However, GW4869 interdicted the promotive effect of AH on exosomes from HK-2 cells and the suppression of exosomes on NF-κB/NLRP3 activation in HMCs. Taken together, this study demonstrated that there was an inhibitory effect of AH therapy on NF-κB/NLRP3 signaling via mediating exosomes release in IgAN rats, which provided an alternative approach for IgAN treatment.


Asunto(s)
Artemisininas/administración & dosificación , Artemisininas/farmacología , Exosomas/efectos de los fármacos , Glomerulonefritis por IGA/tratamiento farmacológico , Hidroxicloroquina/administración & dosificación , Inflamasomas/antagonistas & inhibidores , Riñón/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Células Cultivadas , Quimioterapia Combinada , Exosomas/fisiología , Humanos , Inflamasomas/fisiología , Masculino , FN-kappa B/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
15.
Food Funct ; 10(8): 5102-5114, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31363726

RESUMEN

The present study was designed to investigate the protective effects of Cordyceps militaris polysaccharides (CMP) on STZ-treated DN mice. CMP were identified by FT-IR and HPLC. Diabetic nephropathy (DN) was induced in male C57BL/6 mice by the injection of streptozotocin (STZ, 50 mg kg-1) in citrate buffer on 5 consecutive days. Administration of CMP at 200 and 400 mg kg-1 or irbesartan at 60 mg kg-1 in the STZ-treated mice could prevent the damage caused by STZ. CMP significantly reduced the STZ-induced higher expression of the kidney index, TC, TG, MDA, urinary protein, Scr, and BUN, while it markedly increased the STZ-induced decrease in GSH levels compared with the DN group. Histopathology analysis of the kidney by PAS, Masson, and HE staining confirmed the renal injury induced by STZ and the protective effects of CMP. Transmission electron microscopy (TEM) results confirmed the severe foot process effacement induced by STZ, but CMP treatment inhibited the podocytes' structure defects and ameliorated the function of podocytes. Desmin was measured by immunofluorescence and was related to podocyte injury. The results showed that CMP lessened the expression of desmin induced by STZ. CD68 expression was measured by immunohistochemistry analysis, and the expressions of IL-1ß, IL-6, and MCP-1 mRNA were measured by qRT-PCR. The results showed that CMP suppressed the expressions of CD68, IL-1ß, IL-6, and MCP-1 mRNA induced by STZ. The role of autophagy in the treatment of DN mice with CMP was detected by TEM and western blotting. The results showed that the administration of CMP was able to overcome the STZ-treated autophagy deficiency, significantly increase the rate of autophagy in the kidney, promote the expression of Atg5, beclin1 and LC3 protein, and reduce the expression of p62 protein. In conclusion, the present study demonstrates that CMP exert a protective effect on DN in STZ-treated mice possibly via activation of autophagy.


Asunto(s)
Cordyceps/química , Nefropatías Diabéticas/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Polisacáridos/administración & dosificación , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Phytomedicine ; 59: 152913, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30991182

RESUMEN

BACKGROUND: Zhen-wu-tang (ZWT), a traditional herbal formula, has been widely used for the treatment of kidney diseases in clinics, but the underlying molecular mechanisms have not been fully understood. PURPOSE: Inflammation mediated podocyte injury has been reported to constitute a crucial part in the pathogenesis of membranous nephropathy (MN). The current study was designed to evaluate the effect of ZWT on MN related to nuclear factor-κB (NF-κB) pathway and NLRP3 inflammasome. METHODS: The main components of ZWT were identified by 3D-ultra performance liquid chromatography (3D-UPLC) assay. A MN rat model induced by cationic-bovine serum albumin (C-BSA) and podocytes stimulated by TNF-α were used in this study. The 24 h urine protein, serum total cholesterol (TC) and triglyceride (TG), as well as kidney histology were measured to evaluate kidney damage. The expressions of IgG and complement 3 (C3), and the co-localization of NLRP3 and ASC were detected by immunofluorescence. The expressions of podocyte injury related protein desmin, podocin were measured by immunohistochemistry and western blot. Cell vitality of cultured podocytes was detected by MTT assay, as apoptosis assay was measured via flow cytometry. The protein expressions of p-p65, p-IκBα, NLRP3, Caspase-1, IL-1ß were detected by western blot. RESULTS: Our results showed that ZWT significantly ameliorated kidney damage in MN model rats by decreasing the levels of 24 h urine protein, TC and TG. ZWT also improved renal histology and reduced the expressions of IgG and C3 in glomerulus. In addition, ZWT lessened the expressions of desmin, but increased podocin expression in vivo and vitro. ZWT protected cultured podocytes by maintaining cell vitality and inhibiting apoptosis. Moreover, we found that ZWT suppressed the expressions of NLRP3, Caspase-1, IL-1ß and the co-localization of NLRP3 and ASC. Furthermore, the inhibition of NLRP3 inflammasome under ZWT treatment were accompanied by down-regulation of NF-κB pathway, as the p-p65 and p-IκBα protein expression were reduced. CONCLUSIONS: Our present study indicates that the inhibition of NF-κB pathway and NLRP3 inflammasome might be the potential mechanisms for the therapeutic effects of ZWT against MN.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Glomerulonefritis Membranosa/tratamiento farmacológico , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 1/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas I-kappa B/metabolismo , Inflamasomas/efectos de los fármacos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Glomérulos Renales/efectos de los fármacos , Masculino , Inhibidor NF-kappaB alfa/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
17.
Int Immunopharmacol ; 70: 313-323, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30852287

RESUMEN

Immunoglobulin A nephropathy (IgAN) is an autoimmune kidney disease with complex pathogenesis leading to end-stage renal damage. The crucial pathological characteristic in IgAN is IgA immune complexes deposition accompany with mesangial cell proliferation and mesangial matrix expansion. Artemisinin (ART) is isolated from traditional Chinese medicine Artemisia annua L. Hydroxychloroquine (HCQ) is a classical antimalarial drug used to treat autoimmune diseases. Both of them possess immunosuppressive, immunomodulatory and anti-inflammatory features. The aim of this study was to investigate the pharmacological effects of ART combined with HCQ (AH) and explore the underlying mechanisms in IgAN. In vivo, our results showed that AH could significantly improve kidney dysfunction, decrease mesangial matrix expansion as well as immune complexes in mesangial area visualized by H&E and PAS staining. The depositions of IgA immune complexes and complement 3 (C3) were obviously reduced after AH treatment by immunofluorescence. Interestingly, the morphology of kidney and spleen was significantly swelled but reverted by AH in IgAN rats. Further mechanistic study showed that the higher proportions of the Th2 and Th17 cells were reduced but the lower differentiation of Th1 and Treg cells subsets were promoted by AH. Taken together, this study demonstrated that there was an immunosuppressive effect of AH therapy on IgAN rats via regulating the differentiation of CD4+ T cell subsets, which provided an alternative approach for IgAN treatment.


Asunto(s)
Artemisininas/uso terapéutico , Quimioterapia Combinada , Glomerulonefritis por IGA/tratamiento farmacológico , Hidroxicloroquina/uso terapéutico , Inmunosupresores/uso terapéutico , Células Mesangiales/fisiología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Células Th2/inmunología , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Artemisia annua/inmunología , Antígenos CD4/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Masculino , Medicina Tradicional China , Ratas , Ratas Sprague-Dawley
18.
Biomed Pharmacother ; 109: 1296-1305, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551379

RESUMEN

Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia and edema. The disorder of sodium and water metabolism is a critical mechanism regulating the origination and progression of NS. Zhen-wu-tang (ZWT) has been traditionally used to treat edema disease in China and Japan. The present study was carried out to assess the protective effect of ZWT in Adriamycin-induced (ADR) NS rats and investigate the potential anti-NS mechanisms of ZWT. We found that ZWT treatment ameliorate impaired kidney function and regulate water balance of kidney. Importantly, ZWT increased the expression of Aquaporin-2 (AQP2) which play key roles in maintaining body water homeostasis. Additionally, we determined miRNAs expression patterns in NS rats. Using bioinformatics prediction and miR-92b mimic or inhibitor in vitro, we identified miR-92b as a possible modulator of AQP2. Also we found that ZWT can decrease the expression of miR-92b and reverse the effect of miR-92b on AQP2 in vitro. We further demonstrated that miR-92b directly regulated AQP2 expression by targeting 3'-UTR of AQP2. These finding suggest that ZWT may reduce renal edema in Adriamycin-induced nephropathy via regulating AQP2 and miR-92b.


Asunto(s)
Acuaporina 2/metabolismo , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , MicroARNs/metabolismo , Animales , China , Japón , Riñón/efectos de los fármacos , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
19.
Biomed Pharmacother ; 101: 635-647, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29518610

RESUMEN

Zhen-wu-tang (ZWT) has been widely applied in chronic kidney diseases. However, the mechanism of ZWT remains unclear. Peroxisome proliferator-activated receptors-γ (PPARγ) is known as a protective factor for podocyte and kidney function. This study is aimed to investigate the protective effects of ZWT on IgA nephropathy (IgAN) in rats against podocyte injury and the underlying mechanism related to PPARγ. IgAN model rats were induced by administering bovine serum albumin, lipopolysaccharide, and carbon tetrachloride. ZWT at two doses and GW9662 (PPARγ antagonist) was administered once daily for 4 weeks respectively. Cultured podocyte induced by LPS were used to evaluate the podocyte-protective effect and related mechanism of ZWT in vitro. Results showed that ZWT observably reduced proteinuria and hematuria excretion, as well as the levels of blood urea nitrogen, serum creatinine, serum uric acid, low-density lipoprotein cholesterol, total cholesterol and triglycerides, but increased the contents of high-density lipoprotein cholesterol, ameliorating renal function and hyperlipidemia state in IgAN rats. Besides, both ZWT administration groups alleviated kidney pathological lesion, macrophage infiltration, IgA and C3 deposition in glomeruli. To further demonstrate the protective effects of ZWT, we found that podocyte damage was markedly ameliorated with ZWT treatments in IgAN rats and LPS-induced podocyte injury model by suppressing the expressions of desmin, reducing podocyte apoptosis and augmenting nephrin and podocin levels. Moreover, ZWT inhibited the phosphorylation of NF-κB and IκBα, simultaneously upregulated PPARγ. However, GW9662 made no difference in all the above effects compared to the model group, and was reversed by ZWT in vitro study. In conclusion, these results demonstrated that ZWT ameliorated IgAN-induced podocyte injury via upregulation PPARγ and the underlying mechanism might involve the inhibition of NF-κB pathway.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/metabolismo , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Podocitos/metabolismo , Animales , Línea Celular Transformada , Medicamentos Herbarios Chinos/farmacología , Glomerulonefritis por IGA/patología , Masculino , Podocitos/efectos de los fármacos , Podocitos/patología , Ratas , Ratas Sprague-Dawley
20.
Exp Ther Med ; 15(3): 2436-2442, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29456648

RESUMEN

Lupus nephritis (LN) is one of the most common and severe manifestations of systemic lupus erythematosus, leading to permanent renal damage and chronic kidney disease. Hydroxychloroquine (HCQ) serves a protective role against lupus-associated clinical manifestations and medical complications; however, it results in numerous adverse reactions, limiting its long-term use. The aim of the present study was to investigate the combined effect of HCQ and artemisinin (ART) on LN, and to elucidate the underlying mechanisms. An in vivo LN mouse model was prepared, and the animals were administered prednisone (PDS; serving as a positive control), high-dose HCQ (H-HCQ) or low-dose HCQ combined with ART (L-HCQ + ART) once daily for 8 weeks. The body weight, serum biochemical parameters, immune and inflammatory indicators, renal and spleen histological alterations, and mRNA expression levels of Kruppel-like factor 15 (KLF15) and nuclear factor-κB (NF-κB) were analyzed. It was observed that L-HCQ + ART and H-HCQ ameliorated the LN-induced body weight decrease, and significantly decreased the levels of anti-double stranded DNA, antinuclear antibodies, immunoglobulin G, interferon γ, tumor necrosis factor-α and transforming growth factor-ß1, as well as improved the kidney and spleen pathology, when compared with the model group. In addition, L-HCQ + ART and H-HCQ treatments induced KLF15 upregulation and NF-κB downregulation. These results indicated that treatment with L-HCQ + ART exerted renoprotective effects by regulating the expression levels of cytokines, KLF15 and NF-κB. This combination treatment may have a similar immunosuppressive effect as PDS and H-HCQ, and may be a promising alternative for LN treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...