Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(2): 231616, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356873

RESUMEN

Dormancy release pattern, sprout growth and later reproduction were studied among various tuber sizes of Cyperus esculentus to determine effective methods to release dormancy and further to select suitable tuber size of this species in production. The results showed that medium tubers performed better during sprouting than large and small tubers under all pre-sprouting treatments. Pre-sprouting treatments at 25°C, 35°C, RT (room temperature) and -2°C were effective in relieving dormancy in medium tubers. Tiller number from medium tubers were significantly higher under 25°C, RT and 45°C than under 35°C and -2°C. Shoot and root mass from medium tubers were significantly higher under the 25°C, 35°C and RT than under other treatments. Tiller and tuber numbers both decreased with decreasing tuber size, as did tuber yield after three months of growth. Furthermore, leftover mass decreased with decreasing tuber mass and remained unchanged at sprouting and maturity periods. A significantly negative allometric correlation was found between plant mass and tuber mass from small tubers. However, a significantly positive allometric correlation was found between tuber size and tuber number from large tubers. In conclusion, medium tubers had a competitive advantage in sprouting, growth and reproduction.

2.
Light Sci Appl ; 13(1): 50, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355673

RESUMEN

Analog feature extraction (AFE) is an appealing strategy for low-latency and efficient cognitive sensing systems since key features are much sparser than the Nyquist-sampled data. However, applying AFE to broadband radio-frequency (RF) scenarios is challenging due to the bandwidth and programmability bottlenecks of analog electronic circuitry. Here, we introduce a photonics-based scheme that extracts spatiotemporal features from broadband RF signals in the analog domain. The feature extractor structure inspired by convolutional neural networks is implemented on integrated photonic circuits to process RF signals from multiple antennas, extracting valid features from both temporal and spatial dimensions. Because of the tunability of the photonic devices, the photonic spatiotemporal feature extractor is trainable, which enhances the validity of the extracted features. Moreover, a digital-analog-hybrid transfer learning method is proposed for the effective and low-cost training of the photonic feature extractor. To validate our scheme, we demonstrate a radar target recognition task with a 4-GHz instantaneous bandwidth. Experimental results indicate that the photonic analog feature extractor tackles broadband RF signals and reduces the sampling rate of analog-to-digital converters to 1/4 of the Nyquist sampling while maintaining a high target recognition accuracy of 97.5%. Our scheme offers a promising path for exploiting the AFE strategy in the realm of cognitive RF sensing, with the potential to contribute to the efficient signal processing involved in applications such as autonomous driving, robotics, and smart factories.

3.
Aquat Toxicol ; 266: 106775, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043483

RESUMEN

Water pollution induced by antibiotics has garnered considerable concern, necessitating urgent and effective removal methods. This study focused on exploring ciprofloxacin (CIP) removal by duckweed and assessing CIP bioaccumulation and toxic effects within duckweed under varying dissolved organic matter categories, pH levels, and nutrient (nitrogen (N) and phosphorus (P)) levels. The results revealed the proficient and rapid elimination of CIP from water by duckweed, resulting in 86.17 % to 92.82 % removal efficiency at the end of the 7-day experiment. Across all exposure groups, varying degrees of CIP bioaccumulation in duckweed were evident, with uptake established as a primary pathway for CIP elimination within this plant. Additionally, five CIP metabolites were identified in duckweed tissues. Interestingly, the presence of humic acid (HA) and fulvic acid (FA) reduced CIP absorption by duckweed, with FA yielding a more pronounced impact. Optimal CIP removal was recorded at a pH of 7.5, while duckweed displayed heightened physiological stress induced by CIP at pH 8.5. Although the influence of N and P concentrations on CIP removal by duckweed was modest, excessive N and P levels intensified the physiological strain of CIP on duckweed.


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Ciprofloxacina/toxicidad , Ciprofloxacina/análisis , Materia Orgánica Disuelta , Bioacumulación , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Nutrientes , Araceae/metabolismo , Concentración de Iones de Hidrógeno
4.
Toxics ; 11(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38133367

RESUMEN

In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of "pseudo-persistence". This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.

5.
Opt Lett ; 48(15): 3889-3892, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527075

RESUMEN

We experimentally demonstrate an all-optical nonlinear activation unit based on the injection-locking effect of distributed feedback laser diodes (DFB-LDs). The nonlinear carrier dynamics in the unit generates a low-threshold nonlinear activation function with optimized operating conditions. The unit can operate at a low threshold of -15.86 dBm and a high speed of 1 GHz, making it competitive among existing optical nonlinear activation approaches. We apply the unit to a neural network task of solving the second-order ordinary differential equation. The fitting error is as low as 0.0034, verifying the feasibility of our optical nonlinear activation approach. Given that the large-scale fan-out of optical neural networks (ONNs) will significantly reduce the optical power in one channel, our low-threshold scheme is suitable for the development of high-throughput ONNs.

6.
Chemosphere ; 329: 138681, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059198

RESUMEN

Ibuprofen (IBP) is a typical nonsteroidal anti-inflammatory drug with a wide range of applications, large dosages, and environmental durability. Therefore, ultraviolet-activated sodium percarbonate (UV/SPC) technology was developed for IBP degradation. The results showed that IBP could be efficiently removed using UV/SPC. The IBP degradation was enhanced with prolonged UV irradiation time, with the decreasing IBP concentration and the increasing SPC dosage. The UV/SPC degradation of IBP was highly adaptable to pH ranging from 4.05 to 8.03. The degradation rate of IBP reached 100% within 30 min. The optimal experimental conditions for IBP degradation were further optimized using response surface methodology. IBP degradation rate reached 97.3% under the optimal experimental conditions: 5 µM of IBP, 40 µM of SPC, 7.60 pH, and UV irradiation for 20 min. Humic acid, fulvic acid, inorganic anions, and natural water matrix inhibited the IBP degradation to varying degrees. Scavenging experiments of reactive oxygen species indicated that hydroxyl radical played a major role in the UV/SPC degradation of IBP, while carbonate radical played a minor role. Six IBP degradation intermediates were detected, and hydroxylation and decarboxylation were proposed as the primary degradation pathways. An acute toxicity test, based on the inhibition of luminescence in Vibrio fischeri, indicated that the toxicity of IBP during UV/SPC degradation decreased by 11%. An electrical energy per order value of 3.57 kWh m-3 indicated that the UV/SPC process was cost-effective in IBP decomposition. These results provide new insights into the degradation performance and mechanisms of the UV/SPC process, which can potentially be used for practical water treatment in the future.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Radical Hidroxilo , Ibuprofeno/toxicidad , Carbonatos , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua/toxicidad , Oxidación-Reducción , Rayos Ultravioleta
7.
Opt Express ; 30(23): 42057-42068, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366667

RESUMEN

Photonics physically promises high-speed and low-consumption computing of matrix multiplication. Nevertheless, conventional approaches are challenging to achieve large throughput, high precision, low power consumption, and high density simultaneously in a single architecture, because the integration scale of conventional approaches is strongly limited by the insertion loss of cascaded optical phase shifters. Here, we present a parallel optical coherent dot-product (P-OCD) architecture, which deploys phase shifters in a fully parallel way. The insertion loss of phase shifters does not accumulate at large integration scale. The architecture decouples the integration scale and phase shifter insertion loss, making it possible to achieve superior throughput, precision, energy-efficiency, and compactness simultaneously in a single architecture. As the architecture is compatible with diverse integration technologies, high-performance computing can be realized with various off-the-shelf photonic phase shifters. Simulations show that compared with conventional architectures, the parallel architecture can achieve near 100× higher throughput and near 10× higher energy efficiency especially with lossy phase shifters. The parallel architecture is expected to perform its unique advantage in computing-intense applications including AI, communications, and autonomous driving.

8.
Environ Sci Pollut Res Int ; 29(46): 70000-70013, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35579830

RESUMEN

The salinization of grassland in arid and semi-arid areas is a serious environmental issue in China. Halophytes show extreme salt tolerance and are grown in saline-alkaline environments. Their rhizosphere microorganisms contribute significantly to plant stress tolerance. To study bacterial and fungal community structure changes in Chinese ryegrass (Leymus chinensis) rhizosphere soil under salt and alkali stress, pot experiments were conducted with different salt and alkali stress intensities. High-throughput sequencing was conducted, and the microbial diversity, community structure, and driving factors were analyzed in rhizosphere soil. The salinization of grassland in arid and semi-arid areas is a serious environmental issue in China. Halophytes show extreme salt tolerance and grow in saline-alkaline environments. A total of 549 species of bacteria from 28 phyla and 250 species from 11 phyla of fungi were detected in the rhizosphere soil of Leymus chinensis with different saline-alkali gradients. Alpha diversity analysis along saline-alkali gradients showed that bacterial community richness and diversity were the highest in the moderate saline-alkali group (pH = 8.28, EC = 160.4 µS·cm-1), while fungi had high richness and diversity in the control group (pH = 7.35, EC = 134.5 µS·cm-1). The bacteriophyta Proteobacteria, Acidobacteria, Plantomycetes, and the eumycota Ascomycota, Basidiomycota, and Glomeromycota were found with relative abundances of more than 10%. Saline-alkali gradients had significant effects on the abundance of the bacterial and fungal groups in the rhizosphere. The distribution of bacterial colony structure was not significant at the species level (P > 0.05). However, there were significant differences in the distribution of fungal structure and considerable differences in the composition of fungal species among the moderate saline-alkali group, severe saline-alkali group, and control group (P < 0.05). Correlation analysis showed that the bacterial phylum Gemmatimonadetes had a highly significant positive correlation with pH and EC (P < 0. 01). Saline-alkali stress significantly inhibited the abundance of the bacteria Latescibacteria, Cyanobacteria, and Bacteroides, and the fungi Zoopagomycota, Mortierllomycota, and Cryptomycota (P < 0. 05). Compared with fungi, bacterial community composition was most closely correlated with soil salinization. This report provided new insights into the responses of relationships between rhizosphere soil microorganisms and salt and alkali tolerance of plants.


Asunto(s)
Ascomicetos , Micobioma , Álcalis , Bacterias , Poaceae , Rizosfera , Plantas Tolerantes a la Sal , Suelo/química , Microbiología del Suelo
9.
Environ Sci Pollut Res Int ; 28(7): 8258-8265, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33052570

RESUMEN

The photochemical degradation of norfloxacin (NOR) and oxytetracycline (OTC) was investigated under ultraviolet (UV) irradiation. The results indicated that both NOR and OTC can be degraded, whereas the reaction rates decreased with increasing concentration of NOR and OTC. The degradation rates of NOR and OTC (5 µM) were 0.0256 min-1 and 0.0140 min-1. Acidic conditions inhibited the degradation of NOR; however, alkaline conditions promoted the degradation of NOR. Meanwhile, the degradation of OTC was promoted by alkaline conditions but hardly affected by acidic conditions. In real water, the degradation of NOR was slower than that in ultrapure water, whereas the degradation of OTC was faster in real water. NOR produced five degradation products, with pathways mainly comprising hydroxylation and defluorination. OTC produced three degradation products, with its degradation pathways mainly consisting of deep oxidation, dehydration, and secondary alcohol oxidation. During the UV photolysis process, the mineralization rates of NOR and OTC (5 µM) were 9.83% and 6.87% after 60-min irradiation. This work can provide a theoretical basis for understanding the migration and transformation behavior of antibiotics in the water environment.


Asunto(s)
Oxitetraciclina , Contaminantes Químicos del Agua , Antibacterianos , Cinética , Norfloxacino , Oxidación-Reducción , Oxitetraciclina/análisis , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
10.
Environ Res ; 188: 109804, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32798943

RESUMEN

The degradation of the artificial sweetener acesulfame (ACE) was investigated using an ultraviolet (UV)365-activated peroxydisulfate (PDS) process. The results demonstrated that the ACE reaction rate with the UV/PDS process followed pseudo first-order kinetics (R2 > 0.9) under various conditions. A high dosage of PDS, alkaline condition, and the existence of NO3- and Cl- enhanced ACE degradation; however, a high dosage of ACE, the existence of HCO3-, humic acid, and fulvic acid, and a real water matrix did not facilitate the degradation of ACE. Four types of transformation products were detected in the degradation of ACE by UV/PDS, and the primary degradation pathways were oxidation, hydroxyl substitution, hydrolysis, and hydration. The hydroxyl radicals played a predominant role (71.31%) in the degradation of ACE by the UV/PDS process, followed by sulfate radicals (14.57%) and UV photolysis (8.83%). Both the degradation and mineralization rates of ACE using the UV/PDS process had significant advantages over that of the UV/H2O2 process regarding ACE degradation, indicating that the UV/PDS process is more promising for treating water containing ACE.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción , Edulcorantes , Tiazinas , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
11.
Chemosphere ; 251: 126328, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32169706

RESUMEN

A total of 60 snow samples from 16 sites across northeastern China were collected from December 2017 to March 2018. The snow samples were analyzed for pH value, major water-soluble ions (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, and Mg2+), and trace elements (Mn, Cr, Cd, Ni, Cu, Zn, Pb, As, and Fe). The results indicated that snow was slightly alkaline (mean pH value 7.54); Ca2+ and SO42- were the major ions, contributing up to 33.87% and 22.72% of the major ions, respectively; Pb was the dominant element, contributing up to 62.84% of the trace elements. Both the concentration of major ions and trace elements peaked in the middle or later period of the entire snow season. Enrichment factor (EF) analysis indicated that ions (NO3-, NH4+, and Ca2+) and trace elements (Pb, As, Cu, and Zn) were severely enriched by anthropogenic activities. Compared with previous studies, which sampled snow from the high altitude and latitude regions, the concentrations of most of the ions and trace elements in this study were found to be 1-3 and 1-4 orders of magnitude higher, respectively, indicating a threat to human health.


Asunto(s)
Monitoreo del Ambiente , Nieve/química , Oligoelementos/análisis , China , Humanos , Iones/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...