Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(6): 3117-3129, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37309931

RESUMEN

The short-term reduction of air pollutant emissions is an important emergency control measure for avoiding air pollution exceedances in Chinese cities. However, the impacts of short-term emission reductions on the air qualities in southern Chinese cities in spring has not been fully explored. We analyzed the changes in air quality in Shenzhen, Guangdong before, during, and after a city-wide lockdown associated with COVID-19 control during March 14 to 20, 2022. Stable weather conditions prevailed before and during the lockdown, such that local air pollution was strongly affected by local emissions. In-situ measurements and WRF-GC simulations over the Pearl River Delta (PRD) both showed that, due to reductions in traffic emissions during the lockdown, the concentrations of nitrogen dioxide (NO2), respirable particulate matter (PM10), and fine particulate matters (PM2.5) in Shenzhen decreased by (-26±9.5)%, (-28±6.4)%, and (-20±8.2)%, respectively. However, surface ozone (O3) concentration did not change significantly[(-1.0±6.5)%]. TROPOMI satellite observations of formaldehyde and nitrogen dioxide column concentrations indicated that the ozone photochemistry in the PRD in spring 2022 was mainly controlled by the volatile organic compound (VOCs) concentrations and was not sensitive to the reduction in nitrogen oxide (NOx) concentrations. Reduction in NOx may even have increased O3, because the titration of O3 by NOx was weakened. Due to the small spatial-temporal extent of emission reductions, the air quality effects caused by this short-term urban-scale lockdown were weaker than the air quality effects across China during the widespread COVID-19 lockdown in 2020. Future air quality management in South China cities should consider the impacts of NOx emission reduction on ozone and focus on the co-reduction scenarios of NOx and VOCs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Ozono , Compuestos Orgánicos Volátiles , Humanos , Dióxido de Nitrógeno , Control de Enfermedades Transmisibles , Óxido Nítrico , Material Particulado
2.
Huan Jing Ke Xue ; 42(4): 1600-1614, 2021 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-33742795

RESUMEN

Based on the atmospheric pollutant data from twelve monitoring sites in the Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network, the mass concentration trends of atmospheric photochemical oxidants (Ox, NO2+O3) and PM2.5 during 2013-2017 were studied. The complex nonattainment pollution of Ox and PM2.5 is defined as the daily average mass concentration of NO2 and PM2.5 and daily maximum 8 h average (O3 MDA8) mass concentration of O3 simultaneously that exceeds the Chinese grade Ⅱ national air quality standard. The characteristics and meteorological factors that influence the complex nonattainment pollution of Ox and PM2.5 at different types of areas were analyzed. The results indicate that from 2013 to 2017, the annual average mass concentration of PM2.5 in the Pearl River Delta (PRD) region decreased from (44±7) µg·m-3 to (32±4) µg·m-3, which met the annual standard for three consecutive years. The annual average mass concentration of Ox decreased from (127±14) µg·m-3 in 2013 to (114±12) µg·m-3 in 2016 and then showed a general rebound trend to (129±13) µg·m-3 in 2017 when O3 concentrations increased significantly (10 µg·m-3). The proportion of pollution processes with O3 as the primary pollutant increased from 33% in 2013 to 78% in 2017, and the regional characteristics of simultaneous pollution in multiple cities have been highlighted. The complex nonattainment pollution of Ox and PM2.5 occurred 60 times during the study period, primarily in urban sites (78%) and suburban sites (22%). The largest number of days of complex nonattainment pollution occurred in autumn (52%) because of strong solar radiation that was conducive to ozone formation, and consequently, the high oxidization of the atmosphere promoted the secondary generation of PM2.5. The weather conditions that caused the complex nonattainment pollution in the PRD mainly include outflow-high-pressures (43%), subtropical-high-pressures(30%), and tropical-depressions (27%). In terms of specific meteorological conditions, when the temperature was in the range of 20-25℃ and relative humidity was in the range of 60%-75%, the proportion of complex nonattainment pollution was the highest (22%). When O3 pollution was substantial, the high relative humidity and low wind speed during the nighttime caused the concentration of NO2 and PM2.5 to rise significantly, and then the high temperatures during the day aggravated the complex nonattainment pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...