Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 6: 1377542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605940

RESUMEN

Though the portfolio of medicines that are extending and improving the lives of patients continues to grow, drug discovery and development remains a challenging business on its best day. Safety liabilities are a significant contributor to development attrition where the costliest liabilities to both drug developers and patients emerge in late development or post-marketing. Animal studies are an important and influential contributor to the current drug discovery and development paradigm intending to provide evidence that a novel drug candidate can be used safely and effectively in human volunteers and patients. However, translational gaps-such as toxicity in patients not predicted by animal studies-have prompted efforts to improve their effectiveness, especially in safety assessment. More holistic monitoring and "digitalization" of animal studies has the potential to enrich study outcomes leading to datasets that are more computationally accessible, translationally relevant, replicable, and technically efficient. Continuous monitoring of animal behavior and physiology enables longitudinal assessment of drug effects, detection of effects during the animal's sleep and wake cycles and the opportunity to detect health or welfare events earlier. Automated measures can also mitigate human biases and reduce subjectivity. Reinventing a conservative, standardized, and traditional paradigm like drug safety assessment requires the collaboration and contributions of a broad and multi-disciplinary stakeholder group. In this perspective, we review the current state of the field and discuss opportunities to improve current approaches by more fully leveraging the power of sensor technologies, artificial intelligence (AI), and animal behavior in a home cage environment.

2.
Neurotoxicology ; 101: 46-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316190

RESUMEN

Adeno-associated virus (AAV)-based vectors are commonly used for delivering transgenes in gene therapy studies, but they are also known to cause dorsal root ganglia (DRG) and peripheral nerve toxicities in animals. However, the functional implications of these pathologic findings and their time course remain unclear. At 2, 4, 6, and 8 weeks following a single dose of an AAV9 vector carrying human frataxin transgene in rats, non-standard functional assessments, including von Frey filament, electrophysiology, and Rotarod tests, were conducted longitudinally to measure allodynia, nerve conduction velocity, and coordination, respectively. Additionally, DRGs, peripheral nerves, brain and spinal cord were evaluated histologically and circulating neurofilament light chain (NfL) was quantified at 1, 2, 4, and 8 weeks, respectively. At 2 and 4 weeks after dosing, minimal-to-moderate nerve fiber degeneration and neuronal degeneration were observed in the DRGs in some of the AAV9 vector-dosed animals. At 8 weeks, nerve fiber degeneration was observed in DRGs, with or without neuronal degeneration, and in sciatic nerves of all AAV9 vector-dosed animals. NfL values were higher in AAV9 vector-treated animals at weeks 4 and 8 compared with controls. However, there were no significant differences in the three functional endpoints evaluated between the AAV9 vector- and vehicle-dosed animals, or in a longitudinal comparison between baseline (predose), 4, and 8 week values in the AAV9 vector-dose animals. These findings demonstrate that there is no detectable functional consequence to the minimal-to-moderate neurodegeneration observed with our AAV9 vector treatment in rats, suggesting a functional tolerance or reserve for loss of DRG neurons after systemic administration of AAV9 vector.


Asunto(s)
Ganglios Espinales , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratas , Animales , Ganglios Espinales/patología , Fibras Nerviosas , Nervio Ciático , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Neuronas
3.
Front Toxicol ; 5: 1176665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313214

RESUMEN

Introduction: Wistar Han rats are a preferred strain of rodents for general toxicology and safety pharmacology studies in drug development. In some of these studies, visual functional tests that assess for retinal toxicity are included as an additional endpoint. Although the influence of gender on human retinal function has been documented for more than 6 decades, preclinically it is still uncertain if there are differences in retinal function between naïve male and female Wistar Han rats. Methods: In this study, sex-related differences in the retinal function were quantified by analyzing electroretinography (ERG) in 7-9-week-old (n = 52 males and 51 females) and 21-23-week-old Wistar Han rats (n = 48 males and 51 females). Optokinetic tracking response, brainstem auditory evoked potential, ultrasonic vocalization and histology were tested and evaluated in a subset of animals to investigate the potential compensation mechanisms of spontaneous blindness. Results/Discussion: Absence of scotopic and photopic ERG responses was found in 13% of 7-9-week-old (7/52) and 19% of 21-23-week-old males (9/48), but none of female rats (0/51). The averaged amplitudes of rod- and cone-mediated ERG b-wave responses obtained from males were significantly smaller than the amplitudes of the same responses from age-matched females (-43% and -26%, respectively) at 7-9 weeks of age. There was no difference in the retinal and brain morphology, brainstem auditory responses, or ultrasonic vocalizations between the animals with normal and abnormal ERGs at 21-23 weeks of age. In summary, male Wistar Han rats had altered retinal responses, including a complete lack of responses to test flash stimuli (i.e., blindness), when compared with female rats at 7-9 and 21-23 weeks of age. Therefore, sex differences should be considered when using Wistar Han rats in toxicity and safety pharmacology studies with regards to data interpretation of retinal functional assessments.

4.
PLoS One ; 17(11): e0278034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36399470

RESUMEN

Rodents emit ultrasonic vocalizations (USVs) above the human hearing threshold of ~ 20 kHz to communicate emotional states and to coordinate their social interactive behavior. Twenty-two kHz USVs emitted by adult rats have been reported in a variety of aversive social and behavioral situations. They occur not only under painful or restraining conditions but can also be evoked by gentle cutaneous touch or airflow. This study aimed to test if placement of a human hand in a cage can evoke 22-kHz USVs. It was found that 36% of the adult male Sprague-Dawley and 13% of the adult male Wistar Han rats emitted 22-kHz USVs when a gloved hand was introduced into the cages. Average vocalization onset latencies were 5.0 ± 4.4 s (Sprague-Dawley) and 7.4 ± 4.0 s (Wistar Han) and the USVs had a stable frequency (22 kHz) across the calls, ranging from 0.1 to 2.3 seconds in duration. Surprisingly, no 22-kHz USVs were found in any female Wistar Han rats tested. To further explore the mechanisms underlying this observation, we compared retinal function, basal serum corticosterone, and testosterone levels between the 22-kHz USV responders and non-responders. None of these parameters or endpoints showed any significant differences between the two cohorts. The results suggest that the introduction of a gloved-hand inside the cage can trigger adult male albino rats to emit 22-kHz ultrasonic vocalizations. This response should be considered in USV studies and animal welfare.


Asunto(s)
Ultrasonido , Vocalización Animal , Humanos , Animales , Masculino , Femenino , Ratas , Vocalización Animal/fisiología , Ratas Wistar , Ratas Sprague-Dawley , Conducta Social
5.
PLoS One ; 16(9): e0257694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34543354

RESUMEN

In oncology research, while xenograft tumor models are easily visualized and humane endpoints can be clearly defined, metastatic tumor models are often based on more subjective clinical observations as endpoints. This study aimed at identifying objective non-invasive criteria for predicting imminent distress and mortality in metastatic lung tumor-bearing mice. BALB/c and C57BL/6 mice were inoculated with CT26 or B16F10 cells, respectively. The mice were housed in Vium smart cages to continuously monitor and stream respiratory rate and locomotion for up to 28 days until scheduled euthanasia or humane endpoint criteria were met. Body weight and body temperature were measured during the study. On days 11, 14, 17 and 28, lungs of subsets of animals were microCT imaged in vivo to assess lung metastasis progression and then euthanized for lung microscopic evaluations. Beginning at day 21, most tumor-bearing animals developed increased respiratory rates followed by decreased locomotion 1-2 days later, compared with the baseline values. Increases in respiratory rate did not correlate to surface tumor nodule counts or lung weight. Body weight measurement did not show significant changes from days 14-28 in either tumor-bearing or control animals. We propose that increases in respiratory rate (1.3-1.5 X) can be used to provide an objective benchmark to signal the need for increased clinical observations or euthanasia. Adoption of this novel humane endpoint criterion would allow investigators time to collect tissue samples prior to spontaneous morbidity or death and significantly reduce the distress of mice in the terminal stages of these metastatic lung tumor models.


Asunto(s)
Neoplasias Pulmonares , Frecuencia Respiratoria , Animales , Temperatura Corporal , Modelos Animales de Enfermedad , Ratones
6.
Lab Anim Res ; 37(1): 24, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454633

RESUMEN

BACKGROUND: CBA/J mice are standard experimental animals in auditory studies, and age-related changes in auditory pathways are well documented. However, changes in locomotion-related brain regions have not been systematically explored. RESULTS: We showed an increase in immunoreactivity for glial fibrillary acidic protein (GFAP) in the cerebellar molecular layer associated with Purkinje cells in mice at 24 weeks of age but not in the younger mice. Increased GFAP immunoreactivity appeared in the form of clusters and distributed multifocally consistent with hyperplasia of astrocytes that were occasionally associated with Purkinje cell degeneration. Three out of 12 animals at 16 and 24 weeks of age exhibited pre-convulsive clinical signs. Two of these 3 animals also showed increased GFAP immunoreactivity in the cerebellum. Rotarod behavioral assessments indicated decreased performance at 24 weeks of age. CONCLUSIONS: These results suggest minimal to mild reactive astrocytosis likely associated with Purkinje cell degeneration in the cerebellum at 24 weeks of age in CBA/J mice. These findings should be taken into consideration prior to using this mouse strain for studying neuroinflammation or aging.

7.
J Pharmacol Toxicol Methods ; 110: 107084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34102290

RESUMEN

INTRODUCTION: In pharmacology and toxicology studies, the glomerular filtration rate (GFR) is the gold standard for the assessment of renal function, and the renal clearance of inulin in blood measured by photometers is known as a filtration marker for the determination of GFR. Preclinically, a non-invasive GFR measurement method was recently developed in which near-infrared fluorescently labelled inulin (GFR-Vivo 680) was scanned with fluorescence molecular tomography (FMT). However, measurement of GFR using FMT has major disadvantages and technical challenges, such as requiring experienced skills in animal handling and rapid and precise time management. Additionally, fur and skin pigmentation may severely compromise imaging due to tissue fluorescence absorption. To overcome these drawbacks of FMT imaging, we have developed an in- and ex vivo hybrid method for measuring GFR using the in vivo imaging system (IVIS). METHODS: An IVIS-based imaging method was tested to determine the clearance kinetics of plasma GFR-Vivo 680 after a single bolus injection in conscious C57BL/6 mice administered vehicle or cyclosporine A (CsA, 80 mg/kg) for 14 days. RESULTS: Based on a two-compartment model fitting, the estimated GFR was 235 ± 53 and 189 ± 19 µL/min in vehicle-treated and CsA-treated male mice, respectively (p < 0.01). Our assay revealed the decreased GFR, similar to the sensitivity of FMT imaging, which yielded comparable GFR values (229 ± 61 and 151 ± 35 µL/min in vehicle-treated and CsA-treated mice, respectively, p < 0.01), and to those previously reported in the literature. DISCUSSION: These studies demonstrate the feasibility of IVIS imaging measurement of inulin clearance in untreated, vehicle-treated and cyclosporine A-treated mice. We propose this new method as an alternative, simple, and versatile way to measure GFR in vivo and ex vivo in pharmacological and toxicological studies.


Asunto(s)
Inulina , Animales , Tasa de Filtración Glomerular , Pruebas de Función Renal , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Int J Toxicol ; 40(1): 40-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33148080

RESUMEN

Clinical use of the chemotherapeutic agent vincristine (VCR) is limited by chemotherapy-induced peripheral neuropathy (CiPN). A new formulation of VCR encapsulated by nanoparticles has been proposed and developed to alleviate CiPN. We hypothesized in nonclinical animals that the nanoparticle drug would be less neurotoxic due to different absorption and distribution properties to the peripheral nerve from the unencapsulated free drug. Here, we assessed whether VCR encapsulation in nanoparticles alleviates CiPN using behavioral gait analysis (CatWalk), histopathologic and molecular biological (RT-qPCR) approaches. Adult male C57BL/6 mice were assigned to 3 groups (empty nanoparticle, nano-VCR, solution-based VCR, each n = 8). After 15 days of dosing, animals were euthanized for tissue collection. It was shown that intraperitoneal administration of nano-VCR (0.15 mg/kg, every other day) and the empty nanoparticle resulted in no changes in gait parameters; whereas, injection of solution-based VCR resulted in decreased run speed and increased step cycle and stance (P < 0.05). There were no differences in incidence and severity of degeneration in the sciatic nerves between the nano-VCR-dosed and solution-based VCR-dosed animals. Likewise, decreased levels of a nervous tissue-enriched microRNA-183 in circulating blood did not show a significant difference between the nano- and solution-based VCR groups (P > 0.05). Empty nanoparticle administration did not cause any behavioral, microRNA, or structural changes. In conclusion, this study suggests that the nano-VCR formulation may alleviate behavioral changes in CiPN, but it does not improve the structural changes of CiPN in peripheral nerve. Nanoparticle properties may need to be optimized to improve biological observations.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Conducta Animal/efectos de los fármacos , Marcha/efectos de los fármacos , Nanopartículas/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Vincristina/toxicidad , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Front Pharmacol ; 12: 728908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153734

RESUMEN

Background: Although multiple randomized controlled trials (RCTs) and systematic review and meta-analysis were performed to investigate the efficiency and safety of nonsteroidal anti-inflammatory drugs (NSAIDs) and opioids in the treatment of acute renal colic, the therapeutic regimen of renal colic is still controversial. Therefore, the aim of this study was to derive a more concise comparison of the effectiveness and safety between NSAIDs and opioids in the treatment for patients with acute renal colic by a systematic review and meta-analysis. Design: We searched PubMed, Embase, and Cochrane Central Register of controlled trials for seeking eligible studies. The pooled mean difference (MD) or risk ratio (RR) with 95% confidence interval (CI) was calculated using the random effects model. The primary outcome was assessed according to the Grading of Recommendations Assessment, Development and Evaluation. Results: A total of 18 studies involving 3,121 participants were included in the systematic review and meta-analysis. No significant difference between the NSAID and opioid groups was observed, with changes in the visual analog scale (VAS) at 0-30 min (MD = 0.79, 95% CI: -0.51, 2.10). NSAIDs in the form of intravenous administration (IV) had no better effect on the changes in the VAS at 0-30 min, when compared to opioids (MD = 1.25, 95% Cl: -4.81, 7.3). The NSAIDs group in the form of IV had no better outcome compared to the opioids group, as well as the VAS at 30 min (MD = -1.18, 95% Cl: -3.82, 1.45; MD = -2.3, 95% Cl: -5.02, 0.42, respectively). Moreover, similar results of this outcome were also seen with the VAS at 45 min (MD = -1.36, 95% Cl: -5.24, 2.52). Besides, there was a statistical difference in the incidence of later rescue (RR = 0.76, 95% CI: 0.66, 0.89), drug-related adverse events (RR = 0.44, 95% CI: 0.27, 0.71), and vomiting (RR = 0.68, 95% CI: 0.49, 0.96). Conclusion: There is no significant difference between the NSAIDs and opioids in the treatment of renal colic in many outcomes (e.g., the VAS over different periods using different injection methods at 30 and 60 min), which has been focused on in this study. However, the patients who were treated using NSAIDs by clinicians can benefit from fewer side effects.

10.
Toxicol Pathol ; 48(1): 228-237, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30987556

RESUMEN

The potential for neurogenesis in the cranial (superior) cervical ganglia (SCG) of the sympathetic nervous system was evaluated. Eleven consecutive daily doses of guanethidine (100 mg/kg/d) were administered intraperitoneally to rats in order to destroy postganglionic sympathetic neurons in SCG. Following the last dose, animals were allowed to recover 1, 3, or 6 months. Right and left SCG from guanethidine-treated and age-matched, vehicle-treated control rats were harvested for histopathologic, morphometric, and stereologic evaluations. Both morphometric and stereologic evaluations confirmed neuron loss following guanethidine treatment. Morphometric analysis revealed a 50% to 60% lower number of tyrosine hydroxylase (TH)-positive neurons per unit area of SCG at both 3 and 6 months of recovery, compared to ganglia of age-matched controls, with no evidence of restoration of neuron density between 3 and 6 months. Reductions in TH-positive neurons following guanethidine treatment were corroborated by unbiased stereology of total hematoxylin and eosin-stained neuron numbers in SCG. Stereologic analyses revealed that total neuron counts were lower by 37% at 3 months of recovery when compared to age-matched vehicle controls, again with no obvious restoration between 3 and 6 months. Thus, no evidence was found that postganglionic neurons of the sympathetic nervous system in the adult rat have a neurogenic capacity.


Asunto(s)
Ganglios Simpáticos/fisiología , Guanetidina/toxicidad , Neurogénesis , Simpaticolíticos/toxicidad , Animales , Degeneración Nerviosa , Neuronas , Ratas , Sistema Nervioso Simpático , Tirosina 3-Monooxigenasa
11.
J Am Assoc Lab Anim Sci ; 58(5): 606, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31451133

RESUMEN

This retracts the article entitled, "Effects of Sodium Lighting on Circadian Rhythms in Rats" by Xian Chen, Chang-Ning Liu, and Judith E Fenyk-Melody published in the May issue vol 58, issue 3, p 311-320.1 This article is being retracted with the support of all 3 coauthors due to methodological and authorship issues.

12.
J Am Assoc Lab Anim Sci ; 58(3): 311-320, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30971327

RESUMEN

Rodent studies often must be conducted during an animal's active phase (that is, in darkness) yet also during a typical day shift for staff. Low-pressure sodium lighting (LPSL), to which human retinas are more sensitive than rodents' at low intensity, has been used to facilitate study conduct in dark phase. The assumption was that LPSL would be equivalent to total darkness due to low rodent retinal sensitivity but provide enough lighting for safe technical manipulations due to higher human retinal sensitivity. Unlike other light sources, LPSL has been tested for effects on circadian rhythm specific to locomotive activities in albino mice. Whether LPSL affects circadian rhythms in rats is unknown. In this study, circadian endpoints were derived from body temperature and locomotor activity via telemeters in 8 adult male Wistar rats. When moved from a 12:12-h white-light (that is, cold white fluorescent light):dark (LD) cycle to a 12:12-h white-light:sodium-light cycle, rats demonstrated free-running and disrupted circadian rhythms (that is, lengthened circadian period and reduced circadian robustness and amplitude). Body temperature and locomotor activity were significantly lower in the LPSL phase as compared with dark phase under the baseline condition. When exposed to a 12:12 h sodium-light:dark (SD) cycle, rats entrained with a circadian period similar to 12:12-h white-light:dark (LD), but significantly different from the period under constant darkness (DD). Circadian onset and acrophase were delayed under SD compared with LD. When illuminated with a LPSL pulse under DD, rats showed phase shifts similar to white-light pulse effects, consistent with the phase response curve. To determine whether the image-forming photoreceptors are involved in this process, we used electroretinography. Compared with white light, 589-nm light generated during electroretinography elicited rod photoreceptors responses with longer latency and cone photoreceptor responses with lower amplitude. These results indicate that LPSL is a weaker zeitgeber than white light and may alter the circadian system in rats. Furthermore, because LPSL appeared to be visible to rats, it may not be an appropriate substitute for actual darkness.

13.
Artículo en Inglés | MEDLINE | ID: mdl-30738209

RESUMEN

In drug discovery and development, X-ray micro-computed tomography (micro-CT) has gained increasing importance over the past decades. In recent years, micro-CT imaging of soft tissues has become popular due to the introduction of a variety of radiopaque contrast agents. More recently, nanoparticle-based ExiTron nano 12,000 has become commercially available for the nonclinical micro-CT imaging of soft tissues in rodents. Phagocytosis and accumulation of the contrast agent by Kupffer cells in the liver, as well as macrophages in the spleen, increase the soft tissue X-ray attenuation for up to 6 months. Therefore, it is essential to understand the potential toxicity of this nanomaterial in micro-CT imaging prior to its application in pharmacology and/or toxicology studies. Herein, we describe the time-course and distribution of the contrast in the liver, spleen and blood after a single intravenous injection (IV) of this nanoparticle contrast agent at 0.1 ml/mouse. Thoracic images of male adult C57BL/6 mice were acquired using a Bruker SkyScan 1276 micro-CT over a period of 29 days. The stability of X-ray attenuation enhancement in the above tissues was also tested after a single dose of Kupffer cell toxicant gadolinium chloride (GdCl3) at 15 mg/kg on day 2. The liver, spleen and kidney were examined microscopically on days 15 and 29 post treatment. Serum and liver cytokines (IL-1ß, IL-2, IL-6, IL-10, IL-12p70, IFN-γ, IP-10, MIP1-α, MIP1-ß and TNF-α) were quantified on days 15 and 29 as indicators of a pro-inflammatory response to treatment. This study determined that there was an accumulation of amphophilic granular material in the cells of the mononuclear phagocyte system in the liver and spleen following a single dose of ExiTron nano 12,000 and a second dose of GdCl3 or its vehicle. However, ExiTron nano12000 contrast administration did not cause any hepatotoxicity in the liver, nor did pro-inflammatory cytokines release in the liver or serum. Similarly, there were no adverse pathologies in the spleen or kidneys. In summary, ExiTron nano12000 contrast agent-enhanced micro-CT could be used as a safe method in up to 29-day longitudinal efficacy and toxicology mouse studies for the non-invasive assessment of the liver and spleen.


Asunto(s)
Medios de Contraste/farmacocinética , Imagenología Tridimensional/métodos , Nanopartículas/metabolismo , Microtomografía por Rayos X/métodos , Animales , Medios de Contraste/administración & dosificación , Gadolinio/toxicidad , Aumento de la Imagen/métodos , Riñón/diagnóstico por imagen , Riñón/metabolismo , Riñón/patología , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Hígado/diagnóstico por imagen , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Bazo/diagnóstico por imagen , Bazo/metabolismo , Bazo/patología , Microtomografía por Rayos X/instrumentación
14.
PLoS One ; 14(1): e0210995, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30677061

RESUMEN

Chemotherapy-induced peripheral neuropathy (CiPN) is a serious adverse effect in the clinic, but nonclinical assessment methods in animal studies are limited to labor intensive behavioral tests or semi-quantitative microscopic evaluation. Hence, microRNA (miRNA) biomarkers and automated in-life behavioral tracking were assessed for their utility as non-invasive methods. To address the lack of diagnostic biomarkers, we explored miR-124, miR-183 and miR-338 in a CiPN model induced by paclitaxel, a well-known neurotoxic agent. In addition, conventional and Vium's innovative Digital Vivarium technology-based in-life behavioral tests and postmortem microscopic examination of the dorsal root ganglion (DRG) and the sciatic nerve were performed. Terminal blood was collected on days 8 or 16, after 20 mg/kg paclitaxel was administered every other day for total of 4 or 7 doses, respectively, for plasma miRNA quantification by RT-qPCR. DRG and sciatic nerve samples were collected from mice sacrificed on day 16 for miRNA quantification. Among the three miRNAs analyzed, only miR-124 was statistically significantly increased (5 fold and 10 fold on day 8 and day 16, respectively). The increase in circulating miR-124 correlated with cold allodynia and axonal degeneration in both DRG and sciatic nerve. Automated home cage motion analysis revealed for the first time that nighttime motion was significantly decreased (P < 0.05) in paclitaxel-dosed animals. Although both increase in circulating miR-124 and decrease in nighttime motion are compelling, our results provide positive evidence warranting further testing using additional peripheral nerve toxicants and diverse experimental CiPN models.


Asunto(s)
Antineoplásicos/toxicidad , MicroARN Circulante/sangre , Enfermedades del Sistema Nervioso Periférico/sangre , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Animales , Antineoplásicos Fitogénicos/toxicidad , Automatización , Conducta Animal/efectos de los fármacos , Biomarcadores/sangre , MicroARN Circulante/genética , MicroARN Circulante/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Hiperalgesia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/sangre , MicroARNs/genética , MicroARNs/metabolismo , Movimiento , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología
15.
J Appl Toxicol ; 38(2): 193-200, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28815646

RESUMEN

Chemotherapy-induced peripheral neuropathy (CiPN) is a frequent adverse effect in patients and a leading safety consideration in oncology drug development. Although behavioral assessment and microscopic examination of the nerves and dorsal root ganglia can be incorporated into toxicity studies to assess CiPN risk, more sensitive and less labor-intensive endpoints are often lacking. In this study, rats and mice administered vincristine (75 µg kg-1  day-1 , i.p., for 10 days in rats and 100 µg kg-1  day-1 , i.p., for 11 days in mice, respectively) were employed as the CiPN models. Behavioral changes were assessed during the dosing phase. At necropsy, the sural or sciatic nerve was harvested from the rats and mice, respectively, and assessed for mechanical and histopathological endpoints. It was found that the maximal load and the load/extension ratio were significantly decreased in the nerves collected from the animals dosed with vincristine compared with the vehicle-treated animals (P < 0.05). Additionally, the gait analysis revealed that the paw print areas were significantly increased in mice (P < 0.01), but not in rats following vincristine administration. Light microscopic histopathology of the nerves and dorsal root ganglia were unaffected by vincristine administration. We concluded that ex vivo mechanical properties of the nerves is a sensitive endpoint, providing a new method to predict CiPN in rodent. Gait analysis may also be a useful tool in these pre-clinical animal models.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Conducta Animal/efectos de los fármacos , Nervios Periféricos/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Vincristina/efectos adversos , Animales , Fenómenos Biomecánicos , Determinación de Punto Final , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Hiperalgesia/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Umbral del Dolor , Nervios Periféricos/patología , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Ratas Wistar , Proyectos de Investigación , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología
16.
J Pharmacol Toxicol Methods ; 88(Pt 1): 64-71, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28658603

RESUMEN

The purpose of this study was to evaluate functional measures of diminished sympathetic activity after postganglionic neuronal loss in the conscious rat. To produce variable degrees of sympathetic postganglionic neuronal loss, adult rats were treated daily with toxic doses of guanethidine (100mg/kg) for either 5days or 11days, followed by a recovery period of at least 18days. Heart rate, blood pressure, cardiac baroreflex responsiveness, urinalysis (for catecholamine metabolite, 3-methoxy-4-hydroxyphenylethylenglycol; MHPG), and pupillometry were performed during the recovery period. At the end of the recovery period stereology of superior cervical ganglia (SCG) was performed to determine the degree of neuronal loss. Total number of SCG neurons was correlated to physiological outcomes using regression analysis. Whereas guanethidine treatment for 11days caused significant reduction in the number of neurons (15,646±1460 vs. 31,958±1588), guanethidine treatment for 5days caused variable levels of neuronal depletion (26,009±3518). Regression analysis showed that only changes in urinary MHPG levels and systolic blood pressure significantly correlated with reduction of SCG neurons (r2=0.45 and 0.19, both p<0.05). Although cardiac baroreflex-induced reflex tachycardia (345.7±19.6 vs. 449.7±20.3) and pupil/iris ratio (0.50±0.03% vs. 0.61±0.02%) were significantly attenuated in the 11-day guanethidine treated rats there was no significant relationship between these measurements and the number of remaining SCG neurons after treatment (p>0.05). These data suggest that basal systolic blood pressure and urinary MHPG levels predict drug-induced depletion of sympathetic activity in vivo.


Asunto(s)
Guanetidina/toxicidad , Neuronas/efectos de los fármacos , Ganglio Cervical Superior/efectos de los fármacos , Simpaticolíticos/toxicidad , Pruebas de Toxicidad Aguda/métodos , Animales , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Catecolaminas/metabolismo , Estado de Conciencia , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Metoxihidroxifenilglicol/orina , Ratas , Ratas Sprague-Dawley
17.
J Chem Neuroanat ; 76(Pt B): 133-141, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27233661

RESUMEN

Nerve growth factor (NGF) blocking therapies are an emerging and effective approach to pain management. However, concerns about the potential for adverse effects on the structure and function of the peripheral nervous system have slowed their development. Early studies using NGF antisera in adult rats reported effects on the size and number of neurons in the sympathetic chain ganglia. In the work described here, both young adult (6-8 week) and fully mature (7-8 month) rats were treated with muMab 911, a selective, murine, anti-NGF monoclonal antibody, to determine if systemic exposures to pharmacologically active levels of antibody for 1 month cause loss of neurons in the sympathetic superior cervical ganglia (SCG). State-of-the-art, unbiased stereology performed by two independent laboratories was used to determine the effects of muMab 911 on SCG neuronal number and size, as well as ganglion size. Following muMab 911 treatment, non-statistically significant trends toward smaller ganglia, and smaller and fewer neurons, were seen when routine, nonspecific stains were used in stereologic assessments. However, when noradrenergic neurons were identified using tyrosine hydroxylase (TH) immunoreactivity, trends toward fewer neurons observed with routine stains were not apparent. The only statistically significant effects detected were lower SCG weights in muMab 911-treated rats, and a smaller volume of TH immunoreactivity in neurons from younger rats treated with muMab 911. These results indicate that therapeutically relevant exposures to the anti-NGF monoclonal antibody muMab 911 for 1 month have no effect on neuron numbers within the SCG from young or old adult rats.

18.
Artículo en Inglés | MEDLINE | ID: mdl-27085835

RESUMEN

The goal of this study was to determine the degree of sympathetic postganglionic neuronal loss required to impair cardiovascular-related sympathetic activity. To produce neuronal loss separate groups of rats were treated daily with guanethidine for either 5days or 11days, followed by a recovery period. Sympathetic activity was measured by renal sympathetic nerve activity (RSNA). Stereology of thoracic (T13) ganglia was performed to determine neuronal loss. Despite loss of more than two thirds of neurons in T13 ganglia in both treated groups no effect on resting blood pressure (BP) or heart rate (HR) was detected. Basal RSNA in rats treated for 5days (0.61±0.10µV∗s) and 11days (0.37±0.08µV∗s) was significantly less than vehicle-treated rats (0.99±0.13µV∗s, p<0.05). Increases in RSNA by baroreceptor unloading were significantly lower in 5-day (1.09±0.19µV∗s) and 11-day treated rats (0.59±0.11µV∗s) compared with vehicle-treated rats (1.82±0.19µV∗s, p<0.05). Increases in RSNA to chemoreceptor stimulation were significantly lower in 5-day treated rats (1.54±0.25µV∗s) compared with vehicle-treated rats (2.69±0.23µV∗s, p<0.05). Increases in RSNA in 11-day treated rats were significantly lower (0.75±0.15µV∗s, p<0.05) compared with both vehicle-treated and 5-day treated rats. A positive correlation of neurons to sympathetic responsiveness but not basal activity was detected. These data suggest that diminished capacity for reflex sympathetic responsiveness rather than basal activity alone must be assessed for complete detection of neurophysiological cardiovascular impairment.


Asunto(s)
Anestesia/efectos adversos , Sistema Cardiovascular/efectos de los fármacos , Fibras Simpáticas Posganglionares , Sistema Nervioso Simpático/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Sistema Cardiovascular/inervación , Guanetidina/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/inervación , Masculino , Presorreceptores/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Simpaticolíticos/toxicidad , Nervios Torácicos
19.
Toxicol Sci ; 143(1): 116-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326243

RESUMEN

Crizotinib (Xalkori) is a tyrosine kinase inhibitor of both anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition factor (c-Met). Though not predicted from standard nonclinical toxicological evaluation, visual disturbance became a frequently observed adverse event in humans. To understand the possible mechanism of this vision effect, an in vivo electroretinogram (ERG) study was conducted to assess retinal functional changes following oral administration of crizotinib. Immunohistochemical (IHC) staining of ALK and c-Met in the neural retinas of human, non-human primate, dog, rat, and mouse was used to aid in the animal model selection. ALK IHC staining was identified predominantly in the ganglion cell and inner nuclear layers of most species evaluated, in the inner plexiform layer in human and rodent, and in the nerve fiber layer in human and rat only. There was no apparent staining of any layer of the neural retina for c-Met in any of the species evaluated. ERG measurements identified a significant reduction in b-wave amplitude during the initial phase of dark adaptation in the crizotinib-treated rats. ERGs were also taken following oral administration of PF-06463922 (an ALK-selective inhibitor), for an understanding of potential kinase involvement. ERG effects were not observed in PF-06463922-treated animals when comparable exposures in the vitreous humor were achieved. Collectively, our results suggest that the ERG b-wave amplitude decreases during dark adaption following crizotinib administration may be related to signaling changes within the retina in rats, likely independent of ALK inhibition.


Asunto(s)
Adaptación a la Oscuridad/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Retina/efectos de los fármacos , Administración Oral , Quinasa de Linfoma Anaplásico , Animales , Crizotinib , Perros , Electrorretinografía , Potenciales Evocados , Humanos , Inmunohistoquímica , Luz , Macaca fascicularis , Masculino , Ratones , Estimulación Luminosa , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/metabolismo , Pirazoles/administración & dosificación , Piridinas/administración & dosificación , Ratas Long-Evans , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Retina/enzimología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
20.
Cutan Ocul Toxicol ; 33(3): 206-11, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24147951

RESUMEN

CONTEXT: Selective inhibitors of glycine transporter type 1 (GlyT1) increase synaptic glycine concentrations and are being developed to treat cognitive and negative symptoms of schizophrenia. However, increases in systemic glycine levels have been associated with visual disturbances and electroretinogram (ERG) alternations. OBJECTIVE: To determine whether the selective GlyT1 inhibitor PF-03463275 causes changes in ERG responses in albino rats. MATERIALS AND METHODS: Male Sprague-Dawley rats were administered PF-03463275 subcutaneously at 1, 3 and 10 mg/kg 1 h prior to ERG acquisition. Scotopic and photopic luminance responses, photopic adaptometry and flicker responses were measured. Plasma and vitreous samples were obtained at necropsy for determination of PF-03463275 concentrations. RESULTS: A dose-dependent reduction (up to ∼70%) in the amplitude of the scotopic ERG oscillatory potentials (OPs) was observed following PF-03463275 administration. The amplitude of the OPs was also negatively correlated to the concentration of PF-03463275 in the vitreous humor (r = -0.64, p < 0.0001). With the exception of a small increase in scotopic ERG a-wave amplitude and latency no effects were observed on other ERG parameters tested. CONCLUSIONS: We conclude that inhibition of the GlyT1 transporter in the retina causes ERG changes which may underlie recent reports of visual disturbance with GlyT1 inhibitors in clinical trials.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Imidazoles/farmacología , Retina/efectos de los fármacos , Animales , Compuestos de Azabiciclo/sangre , Compuestos de Azabiciclo/farmacocinética , Electrorretinografía/efectos de los fármacos , Imidazoles/sangre , Imidazoles/farmacocinética , Masculino , Estimulación Luminosa , Ratas Sprague-Dawley , Retina/fisiología , Cuerpo Vítreo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...