Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38981667

RESUMEN

OBJECTIVE: The metabolic characteristics of liver cancer drive considerable hurdles to immune cells function and cancer immunotherapy. However, how metabolic reprograming in the tumour microenvironment impairs the antitumour immune response remains unclear. DESIGN: Human samples and multiple murine models were employed to evaluate the correlation between GPR109A and liver cancer progression. GPR109A knockout mice, immune cells depletion and primary cell coculture models were used to determine the regulation of GPR109A on tumour microenvironment and identify the underlying mechanism responsible for the formation of intratumour GPR109A+myeloid cells. RESULTS: We demonstrate that glutamine shortage in liver cancer tumour microenvironment drives an immunosuppressive GPR109A+myeloid cells infiltration, leading to the evasion of immune surveillance. Blockade of GPR109A decreases G-MDSCs and M2-like TAMs abundance to trigger the antitumour responses of CD8+ T cells and further improves the immunotherapy efficacy against liver cancer. Mechanistically, tumour cells and tumour-infiltrated myeloid cells compete for glutamine uptake via the transporter SLC1A5 to control antitumour immunity, which disrupts the endoplasmic reticulum (ER) homoeostasis and induces unfolded protein response of myeloid cells to promote GPR109A expression through IRE1α/XBP1 pathway. The restriction of glutamine uptake in liver cancer cells, as well as the blockade of IRE1α/XBP1 signalling or glutamine supplementation, can eliminate the immunosuppressive effects of GPR109A+ myeloid cells and slow down tumour progression. CONCLUSION: Our findings identify the immunometabolic crosstalk between liver cancer cells and myeloid cells facilitates tumour progression via a glutamine metabolism/ER stress/GPR109A axis, suggesting that GPR109A can be exploited as an immunometabolic checkpoint and putative target for cancer treatment.

2.
Theranostics ; 14(3): 1126-1146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250036

RESUMEN

Background: Neurons in the ventral tegmental area (VTA) are sensitive to stress and their maladaptation have been implicated in the psychiatric disorders such as anxiety and addiction, etc. The cellular properties of the VTA neurons in response to different stressors related to different emotional processing remain to be investigated. Methods: By combining immediate early gene (IEG)-dependent labeling, rabies virus tracing, ensemble-specific transcriptomic analysis and fiber photometry recording in the VTA of male mice, the spatial distribution, brain-wide connectivity and cellular signaling pathways in the VTA neuronal ensembles in response to morphine (Mor-Ens) or foot shock (Shock-Ens) stimuli were investigated. Results: Optogenetic activation of the Mor-Ens drove approach behavior, whereas chemogenetic activation of the Shock-Ens increased the anxiety level in mice. Mor-Ens were clustered and enriched in the ventral VTA, contained a higher proportion of dopaminergic neurons, received more inputs from the dorsal medial striatum and the medial hypothalamic zone, and exhibited greater axonal arborization in the zona incerta and ventral pallidum. Whereas Shock-Ens were more dispersed, contained a higher proportion of GABAergic neurons, and received more inputs from the ventral pallidum and the lateral hypothalamic area. The downstream targets of the G protein and ß-arrestin pathways, PLCß3 and phosphorylated AKT1Thr308, were relatively enriched in the Mor-Ens and Shock-Ens, respectively. Cariprazine, the G-protein-biased agonist for the dopamine D2 receptor, increased the response of Mor-Ens to sucrose water and decreased the anxiety-like behavior during morphine withdrawal, whereas the ß-arrestin-biased agonist UNC9994 decreased the response of Shock-Ens to tail suspension. Conclusions: Taken together, these findings reveal the heterogeneous connectivity and signaling pathways of the VTA neurons in response to morphine and foot shock, providing new insights for development of specific interventions for psychiatric disorders caused by various stressors associated with different VTA neuronal functions.


Asunto(s)
Neuronas Dopaminérgicas , Área Tegmental Ventral , Humanos , Masculino , Animales , Ratones , Transducción de Señal , beta-Arrestinas , Derivados de la Morfina
3.
Sci Adv ; 8(17): eabm3436, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35476440

RESUMEN

Macrophages play a vital role in cardiac repair following myocardial infarction (MI). An enriched environment (EE) is involved in the regulation of macrophage-related activities and disease progression; however, whether EE affects the phenotype and function of macrophages to improve postinfarction cardiac repair remains unknown. In this study, we found that EE improved cardiac function, decreased mortality, and ameliorated adverse ventricular remodeling in mice after MI, with these outcomes closely related to the increased survival of Ly6Clow macrophages and their CCR2-MHCIIlow subsets. EE increased the expression of brain-derived neurotrophic factor (BDNF) in the hypothalamus, leading to higher circulating levels of BDNF, which, in turn, regulated the cardiac macrophages. BDNF bound to tropomyosin receptor kinase B to activate downstream ERK1/2 and AKT pathways, promoting macrophage survival. These findings demonstrate that EE optimizes postinfarction cardiac repair and highlights the significance of EE as a previously unidentified strategy for impeding adverse ventricular remodeling.


Asunto(s)
Infarto del Miocardio , Remodelación Ventricular , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corazón , Macrófagos/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocardio/metabolismo
4.
J Hazard Mater ; 421: 126723, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34325294

RESUMEN

Environmental cadmium, with a high dietary intake and long biological half-life, is a severe health risk by harming physiological function directly or through gut microbiota. However, the toxicity mechanisms of environmental cadmium on microbes and host systems remain unclear. Herein, we established three C. elegans and E. coli cultivated systems to investigate the vital role of microorganisms in cadmium-induced lipid toxicity and depict the interaction between environmental cadmium, bacteria, and the host. We found that only nematodes in the system with live bacteria, rather than UV-killed bacteria or no bacteria, could be induced to fat accumulation by cadmium exposure, suggesting that bacteria mediated the effect of environmental cadmium on body fat. Cadmium caused perturbation of metabolite in bacteria, most notably oleic acid, elevated the synthesis genes expression, and enhanced the bacterial oleic acid production, which further promoted the expression of lipid metabolism-related genes and fat deposition in C. elegans regardless of the cultivated system. Finally, we showed the potential protective effect of Vitamin D3 which prevented cadmium- or oleic acid-induced fat storage significantly. In conclusion, this study illustrates the mechanism underlying cadmium-induced lipid accumulation in body through bacterial metabolites and reveals the interplay between environmental cadmium, microorganisms, and the host.


Asunto(s)
Cadmio , Caenorhabditis elegans , Animales , Bacterias/genética , Cadmio/toxicidad , Escherichia coli , Ácido Oléico
5.
Nat Commun ; 12(1): 5725, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593796

RESUMEN

Although psycho-social stress is a well-known factor that contributes to the development of cancer, it remains largely unclear whether and how environmental eustress influences malignant diseases and regulates cancer-related therapeutic responses. Using an established eustress model, we demonstrate that mice living in an enriched environment (EE) are protected from carcinogen-induced liver neoplasia and transplantable syngeneic liver tumors, owning to a CD8+ T cell-dependent tumor control. We identify a peripheral Neuro-Endocrine-Immune pathway in eustress, including Sympathetic nervous system (SNS)/ß-adrenergic receptors (ß-ARs)/CCL2 that relieves tumor immunosuppression and overcomes PD-L1 resistance to immunotherapy. Notably, EE activates peripheral SNS and ß-ARs signaling in tumor cells and tumor infiltrated myeloid cells, leading to suppression of CCL2 expression and activation of anti-tumor immunity. Either blockade of CCL2/CCR2 or ß-AR signaling in EE mice lose the tumor protection capability. Our study reveales that environmental eustress via EE stimulates anti-tumor immunity, resulting in more efficient tumor control and a better outcome of immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neuroinmunomodulación , Estrés Psicológico/inmunología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Tetracloruro de Carbono/administración & dosificación , Tetracloruro de Carbono/toxicidad , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/metabolismo , Dietilnitrosamina/administración & dosificación , Dietilnitrosamina/toxicidad , Células Estrelladas Hepáticas , Hepatocitos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/inmunología , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Organoides , Receptores Adrenérgicos beta/metabolismo , Receptores CCR2/antagonistas & inhibidores , Receptores CCR2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Sistema Nervioso Simpático/inmunología , Escape del Tumor , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
7.
Clin Transl Med ; 11(7): e410, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34323416

RESUMEN

BACKGROUND: Liver fibrosis and fibrosis-related hepatocarcinogenesis are a rising cause for morbidity and death worldwide. Although transforming growth factor-ß (TGF-ß) is a critical mediator of chronic liver fibrosis, targeting TGF-ß isoforms and receptors lead to unacceptable side effect. This study was designed to explore the antifibrotic effect of Compound kushen injection (CKI), an approved traditional Chinese medicine formula, via a therapeutic strategy of rebalancing TGF-ß/Smad7 signaling. METHODS: A meta-analysis was performed to evaluate CKI intervention on viral hepatitis-induced fibrosis or cirrhosis in clinical randomized controlled trials (RCTs). Mice were given carbon tetrachloride (CCl4 ) injection or methionine-choline deficient (MCD) diet to induce liver fibrosis, followed by CKI treatment. We examined the expression of TGF-ß/Smad signaling and typical fibrosis-related genes in hepatic stellate cells (HSCs) and fibrotic liver tissues by qRT-PCR, Western blotting, RNA-seq, immunofluorescence, and immunohistochemistry. RESULTS: Based on meta-analysis results, CKI improved the liver function and relieved liver fibrosis among patients. In our preclinical studies by using two mouse models, CKI treatment demonstrated promising antifibrotic effects and postponed hepatocarcinogenesis with improved liver function and histopathologic features. Mechanistically, we found that CKI inhibited HSCs activation by stabilizing the interaction of Smad7/TGF-ßR1 to rebalance Smad2/Smad3 signaling, and subsequently decreased the extracellular matrix formation. Importantly, Smad7 depletion abolished the antifibrotic effect of CKI in vivo and in vitro. Moreover, matrine, oxymatrine, sophocarpine, and oxysophocarpine were identified as material basis responsible for the antifibrosis effect of CKI. CONCLUSIONS: Our results unveil the approach of CKI in rebalancing TGF-ß/Smad7 signaling in HSCs to protect against hepatic fibrosis and hepatocarcinogenesis in both preclinical and clinical studies. Our study suggests that CKI can be a candidate for treatment of hepatic fibrosis and related oncogenesis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular , Medicamentos Herbarios Chinos/uso terapéutico , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Masculino , Medicina Tradicional China , Metaanálisis como Asunto , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína smad7/antagonistas & inhibidores , Proteína smad7/genética
8.
Behav Brain Res ; 317: 528-535, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27746207

RESUMEN

Parents-offspring bonding is critical for development of offspring in mammals. While it is known that pups stimuli provide rewarding effects on their parents, few studies have assessed whether parental stimuli serve as a reinforcing agent to their pups, and what the neural mechanisms underlying this reward process may be. In addition to maternal care, male ICR mice display pairmate-dependent parental behavior. Using the conditioned place preference (CPP) paradigm, we examined the effects of maternal and paternal conditioning on the postnatal day 17-21 female ICR mice pups, and compared the expression of oxytocin (OT)- and tyrosine hydroxylase (TH)- immunoreactive (IR) neurons. We found that the pups established dam- or sire- induced CPP when using mother conditioning (MC) or father conditioning (FC) alone. However, the pups failed to show any preference when using mother versus father conditioning (MFC). Compared to the control group, the MC and MFC groups displayed more OT-IR neurons in the supraoptic nucleus and more TH-IR neurons in the ventral tegmental area (VTA). The FC group showed more TH-IR neurons in the VTA compared to the control group, but there were no significant differences in OT-IR neurons. These findings indicate that female ICR mice pups may establish mother- or father- induced CPP. The underpinnings of preference for parents are associated with the activity of VTA dopaminergic neurons, and the preference of pups for mother in particular appears to be associated with OT levels.


Asunto(s)
Condicionamiento Operante/fisiología , Padre , Neuronas/metabolismo , Apego a Objetos , Oxitocina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/citología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Madres , Relaciones Padres-Hijo , Refuerzo en Psicología , Área Tegmental Ventral/metabolismo
9.
Behav Brain Res ; 310: 84-92, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27163750

RESUMEN

Although drug rewards and natural rewards share neural substrates, the neuronal activation patterns and mechanisms behind the interaction between cocaine and social reward are poorly understood. Here, we investigated the conditioned place preference (CPP) in social (conspecific) vs cocaine conditioning, and the expression of central c-Fos, hypothalamic oxytocin (OT) and vasopressin (AVP) in ICR mice. We found that the mice produced CPP when conditioned with unfamiliar conspecific or cocaine alone. However, the mice failed to produce CPP when the two stimuli were concurrently conditioned. Compared to conditioning with conspecific alone, the mice decreased preference for conspecific when conditioning with social vs cocaine. We observed differential expression of c-Fos-immunoreactive neurons in the ventral anterior cingulate cortex, posterior cingulate cortex, accumbens (shell and core), medial nucleus of the amygdale and the ventral pallidum when comparing the control (CK), social (SC) or cocaine conditioning (CC) group, and social vs cocaine conditioning (SCC) group. Compared to the CK group, the SC or CC group had higher OT expression in the paraventricular nucleus (PVN) and lower AVP expression in the PVN and supraoptic nucleus. The SCC group showed lower OT expression compared to the SC group, and higher OT and AVP expression in the PVN compared to the CC group. These results indicate that cocaine impairs social preference through competing with social reward. The differential activations of neurons within specific reward areas, and differential expression of OT and AVP are likely to play an important role in mediating the interaction between social and cocaine rewards.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Hipotálamo/metabolismo , Oxitocina/metabolismo , Conducta Social , Vasopresinas/metabolismo , Animales , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Inmunoquímica , Masculino , Ratones Endogámicos ICR , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Recompensa
10.
Dongwuxue Yanjiu ; 36(2): 103-8, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25855229

RESUMEN

Gender and genetic strain are two prominent variants that influence drug abuse. Although certain sex-related behavioral responses have been previously characterized in ICR mice, little is known about the effects of sex on morphine-induced behavioral responses in this outbred strain. Therefore, in this study, we investigated the sex differences of morphine-induced locomotion, anxiety-like and social behaviors in ICR mice. After morphine or saline exposure for four consecutive days (twice daily), increased locomotion, more time spent in the central area, as well as attenuated rearing and self-grooming behaviors were found in morphine-treated females in an open field; no differences were found in locomotion and the time spent in the central area between male and female controls. When interacting with the same-sex individuals, female controls were engaged in more social investigation, following, body contacting and self-grooming behaviors than controls; morphine exposure reduced contacting and self-grooming behaviors in females; in contrast, these effects were not found in males. These results indicate that female ICR mice are more prosocial and are more susceptible to morphine exposure than males.


Asunto(s)
Conducta Animal/efectos de los fármacos , Morfina/farmacología , Conducta Social , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA