Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autoimmunity ; 57(1): 2361749, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39007896

RESUMEN

BACKGROUND: Dysregulated circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. OBJECTIVE: We aimed to explore the effect of hsa_circ_0044719 (circTRIM25) on the ferroptosis of chondrocytes. METHODS: Chondrocytes were treated with interleukin (IL)-1ß to generate cell model. Cellular behaviours were measured using cell counting kit-8, enzyme-linked immunosorbent assay, relevant kits, propidium iodide staining, and immunofluorescence assay. Quantitative real-time polymerase chain reaction was performed to examine the expression of circTRIM25, miR-138-5p, and cAMP responsive element binding protein 1 (CREB1), and their interactions were assessed using luciferase reporter analysis and RNA pull-down assay. RESULTS: CircTRIM25 was upregulated in OA tissues and IL-1ß-stimulated chondrocytes. Knockdown of circTRIM25 facilitated the viability and suppressed ferroptosis and inflammation of IL-1ß-induced cells. CircTRIM25 served as a sponge of miR-138-5p, which directly targets CREB1. Downregulation of miR-138-5p abrogated the effect induced by knockdown of circTRIM25. Furthermore, enforced CREB1 reversed the miR-138-5p induced effect. Moreover, knockdown of circTRIM25 attenuated cartilage injury in vivo. CONCLUSION: Silencing of circTRIM25 inhibited ferroptosis of chondrocytes via the miR-138-5p/CREB axis and thus attenuated OA progression.


Asunto(s)
Condrocitos , Condrogénesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , MicroARNs , Osteoartritis , ARN Circular , MicroARNs/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , ARN Circular/genética , Humanos , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis/genética , Masculino , Ratones , Animales , Interleucina-1beta/metabolismo , Transducción de Señal , Femenino , Regulación de la Expresión Génica , Silenciador del Gen
2.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791258

RESUMEN

Barley is one of the most important cereal crops in the world, and its value as a food is constantly being revealed, so the research into and the use of barley germplasm are very important for global food security. Although a large number of barley germplasm samples have been collected globally, their specific genetic compositions are not well understood, and in many cases their origins are even disputed. In this study, 183 barley germplasm samples from the Shanghai Agricultural Gene Bank were genotyped using genotyping-by-sequencing (GBS) technology, SNPs were identified and their genetic parameters were estimated, principal component analysis (PCA) was preformed, and the phylogenetic tree and population structure of the samples were also analyzed. In addition, a genome-wide association study (GWAS) was carried out for the hulled/naked grain trait, and a KASP marker was developed using an associated SNP. The results showed that a total of 181,906 SNPs were identified, and these barley germplasm samples could be roughly divided into three categories according to the phylogenetic analysis, which was generally consistent with the classification of the traits of row type and hulled/naked grain. Population structure analysis showed that the whole barley population could be divided into four sub-populations (SPs), the main difference from previous classifications being that the two-rowed and the hulled genotypes were sub-divided into two SPs. The GWAS analysis of the hulled/naked trait showed that many associated loci were unrelated to the Nud/nud locus, indicating that there might be new loci controlling the trait. A KASP marker was developed for one exon-type SNP on chromosome 7. Genotyping based on the KASP assay was consistent with that based on SNPs, indicating that the gene of this locus might be associated with the hulled/naked trait. The above work not only lays a good foundation for the future utilization of this barley germplasm population but it provides new loci and candidate genes for the hulled/naked trait.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hordeum , Filogenia , Polimorfismo de Nucleótido Simple , Hordeum/genética , Estudio de Asociación del Genoma Completo/métodos , China , Sitios de Carácter Cuantitativo , Genotipo , Banco de Semillas , Genoma de Planta , Variación Genética , Análisis de Componente Principal , Fenotipo
3.
Plant Methods ; 20(1): 76, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790046

RESUMEN

BACKGROUND: Isolated microspore culture is a useful biotechnological technique applied in modern plant breeding programs as it can produce doubled haploid (DH) plants and accelerate the development of new varieties. Furthermore, as a single-cell culture technique, the isolated microspore culture provides an excellent platform for studying microspore embryogenesis. However, the reports on isolated microspore culture are rather limited in rice due to the low callus induction rate, poor regeneration capability, and high genotypic dependency. The present study developed an effective isolated microspore culture protocol for high-frequency androgenesis in four japonica rice genotypes. Several factors affecting the isolated microspore culture were studied to evaluate their effects on callus induction and plantlet regeneration. RESULTS: Low-temperature pre-treatment at 4 â„ƒ for 10-15 days could effectively promote microspore embryogenesis in japonica rice. A simple and efficient method was proposed for identifying the microspore developmental stage. The anthers in yellow-green florets located on the second type of primary branch on the rice panicle were found to be the optimal stage for isolated microspore culture. The most effective induction media for callus induction were IM2 and IM3, depending on the genotype. The optimal concentration of 2, 4-D in the medium for callus induction was 1 mg/L. Callus induction was negatively affected by a high concentration of KT over 1.5 mg/L. The differentiation medium suitable for japonica rice microspore callus comprised 1/2 MS, 2 mg/L 6-BA, 0.5 mg/L NAA, 30 g/L sucrose, and 6 g/L agar. The regeneration frequency of the four genotypes ranged from 61-211 green plantlets per 100 mg calli, with Chongxiangjing showing the highest regeneration frequency. CONCLUSIONS: This study presented an efficient protocol for improved callus induction and green plantlet regeneration in japonica rice via isolated microspore culture, which could provide valuable support for rice breeding and genetic research.

4.
Exp Ther Med ; 28(1): 283, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38800044

RESUMEN

Osteoarthritis (OA) is a disease of the joints, characterized by chronic inflammation, cartilage destruction and extracellular matrix (ECM) remodeling. Aberrant chondrocyte hypertrophy promotes cartilage destruction and OA development. Collagen X, the biomarker of chondrocyte hypertrophy, is upregulated by runt-related transcription factor 2 (Runx2), which is mediated by the bone morphogenetic protein 4 (BMP4)/Smad1 signaling pathway. BMP binding endothelial regulator (BMPER), a secreted glycoprotein, acts as an agonist of BMP4. 5,7,3',4'-tetramethoxyflavone (TMF) is a natural flavonoid derived from Murraya exotica L. Results of our previous study demonstrated that TMF exhibits chondroprotective effects against OA development through the activation of Forkhead box protein O3a (FOXO3a) expression. However, whether TMF suppresses chondrocyte hypertrophy through activation of FOXO3a expression and inhibition of BMPER/BMP4/Smad1 signaling remains unknown. Results of the present study revealed that TMF inhibited collagen X and Runx2 expression, inhibited BMPER/BMP4/Smad1 signaling, and activated FOXO3a expression; thus, protecting against chondrocyte hypertrophy and OA development. However, BMPER overexpression and FOXO3a knockdown impacted the protective effects of TMF. Thus, TMF inhibited chondrocyte hypertrophy in OA cartilage through mediating the FOXO3a/BMPER signaling pathway.

5.
Food Chem ; 449: 139262, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608613

RESUMEN

Despite its nutritional components and potential health benefits, the bitterness of quinoa seed limits its utilization in the food industry. Saponins are believed to be the main cause of the bitterness, but it is still uncertain which specific compound is responsible. This study aimed to isolate the main components contributing to the bitterness in quinoa seed by solvent extraction and various column chromatography techniques guided by sensory evaluation. Five compounds were identified by mass spectrometry and nuclear magnetic resonance analyses, with the dose-over-threshold factors from 29.03 to 198.89. The results confirmed that triterpenoids are responsible for the bitter taste in quinoa seed, with phytolaccagenic acid derivatives being the primary contributor. Additionally, kaempferol 3-O-(2″, 6″-di-O-α-rhamnopyranosyl)-ß-galactopyranoside (namely mauritianin), was demonstrated for the first time to be associated with the bitterness of quinoa. This study could provide new insight into the bitter compound identification in quinoa.


Asunto(s)
Chenopodium quinoa , Fitoquímicos , Semillas , Gusto , Chenopodium quinoa/química , Humanos , Semillas/química , Fitoquímicos/química , Extractos Vegetales/química , Estructura Molecular
6.
Plant Mol Biol ; 114(1): 10, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319430

RESUMEN

Quinoa seeds are gluten- and cholesterol-free, contain all amino acids required by the human body, have a high protein content, provide endocrine regulation, protein supplementation, and cardiovascular protection effects. However, metabolite accumulation and transcriptional regulatory networks in quinoa seed development are not well understood. Four key stages of seed development in Dianli-3260 and Dianli-557 were thus analyzed and 849 metabolites were identified, among which sugars, amino acids, and lipids were key for developmental processes, and their accumulation showed a gradual decrease. Transcriptome analysis identified 40,345 genes, of which 20,917 were differential between the M and F phases, including 8279 and 12,638 up- and down-regulated genes, respectively. Grain development processes were mainly enriched in galactose metabolism, pentose and glucuronate interconversions, the biosynthesis of amino acids, and carbon metabolism pathways, in which raffinose, phosphoenolpyruvate, series and other metabolites are significantly enriched, gene-LOC110689372, Gene-LOC110710556 and gene-LOC110714584 are significantly expressed, and these metabolites and genes play an important role in carbohydrate metabolism, lipid and Amino acid synthesis of quinoa. This study provides a theoretical basis to expand our understanding of the molecular and metabolic development of quinoa grains.


Asunto(s)
Chenopodium quinoa , Transcriptoma , Humanos , Chenopodium quinoa/genética , Metaboloma/genética , Semillas/genética , Aminoácidos
7.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38069082

RESUMEN

Barley is the most salt-tolerant cereal crop. However, little attention has been paid to the salt-tolerant doubled haploids of barley derived from mutagenesis combined with isolated microspore culture. In the present study, barley doubled haploid (DH) line 20, which was produced by mutagenesis combined with isolated microspore culture, showed stably and heritably better salt tolerance than the wild type H30 in terms of fresh shoot weight, dry shoot weight, K+/Na+ ratio and photosynthetic characteristics. Transcriptome and metabolome analyses were performed to compare the changes in gene expression and metabolites between DH20 and H30. A total of 462 differentially expressed genes (DEGs) and 152 differentially accumulated metabolites (DAMs) were identified in DH20 compared to H30 under salt stress. Among the DAMs, fatty acids were the most accumulated in DH20 under salt stress. The integration of transcriptome and metabolome analyses revealed that nine key biomarkers, including two metabolites and seven genes, could distinguish DH20 and H30 when exposed to high salt. The pathways of linoleic acid metabolism, alpha-linolenic acid metabolism, glycerolipid metabolism, photosynthesis, and alanine, aspartate and glutamate metabolism were significantly enriched in DH20 with DEGs and DAMs in response to salt stress. These results suggest that DH20 may enhance resilience by promoting lipid metabolism, maintaining energy metabolism and decreasing amino acids metabolism. The study provided novel insights for the rapid generation of homozygous mutant plants by mutagenesis combined with microspore culture technology and also identified candidate genes and metabolites that may enable the mutant plants to cope with salt stress.


Asunto(s)
Hordeum , Transcriptoma , Tolerancia a la Sal/genética , Hordeum/metabolismo , Metabolismo de los Lípidos/genética , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Fotosíntesis/genética , Mutagénesis , Salinidad
8.
aBIOTECH ; 4(3): 202-212, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37970468

RESUMEN

Induced mutations are important for genetic research and breeding. Mutations induced by physical or chemical mutagenesis are usually heterozygous during the early generations. However, mutations must be fixed prior to phenotyping or field trials, which requires additional rounds of self-pollination. Microspore culture is an effective method to produce double-haploid (DH) plants that are fixed homozygotes. In this study, we conducted ethyl methanesulfonate (EMS)-induced mutagenesis of microspore cultures of barley (Hordeum vulgare) cultivar 'Hua30' and landrace 'HTX'. The EMS concentrations were negatively correlated with the efficiency of callus induction and the frequency of mutant plant regeneration. The two genotypes showed different regeneration efficiencies. The phenotypic variation of the regenerated M1 plants and the presence of genome-wide nucleotide mutations, revealed by whole-genome sequencing, highlight the utility of EMS-induced mutagenesis of isolated microspore cultures for developing DH mutants. Genome-wide analysis of the mutation frequency in the regenerated plants revealed that a considerable proportion of mutations resulted from microspore culture (somaclonal variation) rather than EMS-induced mutagenesis. In addition to producing a population of 1972 homozygous mutant lines that are available for future field trials, this study lays the foundation for optimizing the regeneration efficiency of DH plants and the richness of mutations (mainly by fine-tuning the mutagen dosage).

9.
BMC Plant Biol ; 23(1): 521, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891481

RESUMEN

BACKGROUND: Microspore culture is one of the important biotechnological tools in plant breeding. The induction of microspore embryogenesis is a critical factor that affects the yield of microspore-derived embryo productions. Cold treatment has been reported to reprogram the gametophytic pathway in various plant species. However, the exact mechanism(s) underlying the effect of cold pre-treatment of floral buds on the efficiency of ME is still not clear. RESULTS: In this study, the effects of cold stress on the microspore totipotency of rice cultivar Zhonghua 11 were investigated. Our results revealed that a 10-day cold treatment is necessary for microspore embryogenesis initiation. During this period, the survival rate of microspores increased and reached a peak at 7 days post treatment (dpt), before decreasing at 10 dpt. RNA-seq analysis showed that the number of DEGs increased from 3 dpt to 10 dpt, with more downregulated DEGs than upregulated ones at the same time point. GO enrichment analysis showed a shift from 'Response to abiotic stimulus' at 3 dpt to 'Metabolic process' at 7 and 10 dpt, with the most significant category in the cellular component being 'cell wall'. KEGG analysis of the pathways revealed changes during cold treatment. Mass spectrometry was used to evaluate the variations in metabolites at 10 dpt compared to 0 dpt, with more downregulated DEMs being determined in both GC-MS and LC-MS modes. These DEMs were classified into 11 categories, Most of the DEMs belonged to 'lipids and lipid-like molecules'. KEGG analysis of DEMs indicates pathways related to amino acid and nucleotide metabolism being upregulated and those related to carbohydrate metabolism being downregulated. An integration analysis of transcriptomics and metabolomics showed that most pathways belonged to 'Amino acid metabolism' and 'Carbohydrate metabolism'. Four DEMs were identified in the interaction network, with stearidonic acid involving in the most correlations, suggesting the potential role in microspore totipotency. CONCLUSIONS: Our findings exhibited the molecular events occurring during stress-induced rice microspore. Pathways related to 'Amino acid metabolism' and 'Carbohydrate metabolism' may play important roles in rice microspore totipotency. Stearidonic acid was identified, which may participate in the initiation of microspore embryogenesis.


Asunto(s)
Respuesta al Choque por Frío , Oryza , Transcriptoma , Oryza/genética , Fitomejoramiento , Aminoácidos
10.
Biomolecules ; 13(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37759752

RESUMEN

Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety ("Dianli-439") and a sensitive variety ("Dianli-969") were subjected to morphological and physiological measurements and metabolome and transcriptome analyses to investigate their response to high RH stress. In total, 1060 metabolites were detected, and lipids and flavonoids were the most abundant, with 173 and 167 metabolites, respectively. In total, 13,095 differentially expressed genes were identified, and the results showed that abscisic acid, auxin, and jasmonic-acid-related genes involved in plant hormone signaling may be involved in the response of quinoa seedlings to high RH stress. The analysis of the transcription factors revealed that the AP2/ERF family may also play an important role in the response to high RH stress. We identified the possible regulatory mechanisms of the hormone signaling pathways under high RH stress. Our findings can provide a basis for the selection and identification of highly resistant quinoa varieties and the screening of the metabolite-synthesis- and gene-regulation-related mechanisms in quinoa in response to RH stress.

11.
Altern Ther Health Med ; 29(8): 156-165, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37535922

RESUMEN

Objective: Diabetic retinopathy (DR), characterized by neuronal damage in the retina, is primarily driven by oxidative stress resulting from diabetes (DM). This study investigated the potential effects of methylene blue (MB) on streptozotocin (STZ)-induced DR. Methods: A rat model of DR was established via STZ injection, while a cell model was created using high-glucose (HG) exposure of human retinal microvascular endothelial cells. Evaluation of oxidative stress markers, pro-inflammatory cytokines, and pro-apoptotic proteins was performed based on their expression profiles in human retinal microvascular endothelial cells. Results: MB treatment significantly upregulated the expression of sirtuin 1 (SIRT1), which was found to be downregulated in the retinal tissues of STZ-treated rats and HG-exposed human retinal microvascular endothelial cells, as determined by polymerase chain reaction (PCR). Furthermore, MB therapy effectively suppressed STZ-induced oxidative stress, inflammation, and cell death. Consistent with the in vivo findings, MB activated the expression of SIRT1, thereby protecting HG-treated human retinal microvascular endothelial cells against oxidative stress, inflammation, and apoptosis. Conclusion: These results support the conclusion that MB mitigates DR by activating SIRT1, leading to a reduction of inflammation, apoptosis, and oxidative stress.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratas , Humanos , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Azul de Metileno/efectos adversos , Azul de Metileno/metabolismo , Células Endoteliales/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Estrés Oxidativo/fisiología , Inflamación/tratamiento farmacológico , Apoptosis
12.
Metabolites ; 13(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37512513

RESUMEN

Real-time quantitative PCR is a technique that can measure the content of the target nucleic acid sequence of interest in a given sample. It is mainly divided into absolute and relative quantitative methods. The relative quantification is mainly used in gene expressions for functional genomic and transcriptome studies. However, to use this technology accurately, there are some key points to master. First, specific primers need to be designed to ensure amplification of the gene of interest (GOI). Second, the appropriate reference gene or reference gene combination has to be selected. Finally, scientific gene expression level calculations and statistics are required to obtain accurate results. Therefore, this work proposes a workflow for relative quantitative PCR and introduces the relevant points so that beginners can better understand and use this technology.

13.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511340

RESUMEN

Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual amaranth herb that belongs to the family Chenopodiaceae. Quinoa can be cultivated across a wide range of climatic conditions. With regard to its cultivation, nitrogen-based fertilizers have a demonstrable effect on the growth and development of quinoa. How crops respond to the application of nitrogen affects grain quality and yield. Therefore, to explore the regulatory mechanisms that underlie the responses of quinoa seedlings to the application of nitrogen, we selected two varieties (i.e., Dianli-1299 and Dianli-71) of quinoa seedlings and analyzed them using metabolomic and transcriptomic techniques. Specifically, we studied the mechanisms underlying the responses of quinoa seedlings to varying concentrations of nitrogen by analyzing the dynamics of metabolites and genes involved in arginine biosynthesis; carbon fixation; and alanine, aspartate, and glutamate biosynthetic pathways. Overall, we found that differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of quinoa are affected by the concentration of nitrogen. We detected 1057 metabolites, and 29,012 genes were annotated for the KEGG. We also found that 15 DEMs and 8 DEGs were key determinants of the differences observed in quinoa seedlings under different nitrogen concentrations. These contribute toward a deeper understanding of the metabolic processes of plants under different nitrogen treatments and provide a theoretical basis for improving the nitrogen use efficiency (NUE) of quinoa.


Asunto(s)
Chenopodium quinoa , Transcriptoma , Chenopodium quinoa/metabolismo , Plantones/genética , Plantones/metabolismo , Fertilizantes , Nitrógeno/metabolismo , Metaboloma
14.
Cyberpsychol Behav Soc Netw ; 26(8): 613-620, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276074

RESUMEN

The objectives of this study were to examine the influence of bystanders' perceived reasonableness of online messages on their aggressive tendency toward victims and to examine the mediating role of bystanders' attribution of responsibility to victims on their aggressive tendency toward the victims. Our study involved two parts: In Study 1, 295 Taiwanese undergraduates were recruited, and questionnaires were distributed to them to measure their perceived reasonableness of cyberbullying attacks. In Study 2, a total of 78 university students were recruited. The participants' perceived reasonableness of cyberbullying attacks was reduced through experimental manipulation. Subsequently, they were randomly assigned to a group with relatively low reasonableness or a control group. The results of both studies revealed that the participants' aggressive tendency toward the victim was influenced by their perceived reasonableness of cyberbully messages. The relation between perceived reasonableness and aggressive tendency was mediated by the participants' attribution of responsibility to the victim.


Asunto(s)
Acoso Escolar , Víctimas de Crimen , Humanos , Agresión , Conducta Social , Percepción Social
15.
Percept Mot Skills ; 130(4): 1732-1761, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37137162

RESUMEN

Scholars refer to individuals who have been immersed in digital environments and who make easy use of digital languages to interact with the world as "digital natives," and Teo proposed four attributes of digital natives to illustrate their behavioral tendencies. We aimed to expand Teo's framework and to develop and validate the Scale of Digital Native Attributes (SDNA) for measuring cognitive and social interactive attributes of digital natives. Based on pre-test results, we retained 10 attributes and 37 SDNA items, with 3-4 items in each sub-dimension. We then recruited 887 Taiwanese undergraduates as respondents and conducted confirmatory factor analysis to establish construct validity. Moreover, the SDNA correlated with several other related measurements to demonstrate satisfactory criterion-related validity. Internal consistency was evaluated by McDonald's Omega (ω) and Cronbach's α coefficient, showing satisfactory reliability. This preliminary tool is now ready for cross validation and temporal reliability testing in further research.


Asunto(s)
Lenguaje , Estudiantes , Humanos , Reproducibilidad de los Resultados , Cognición , Encuestas y Cuestionarios , Psicometría
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 423-428, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37248837

RESUMEN

Objective To investigate the neuroprotective effect of methylene blue on diabetic retinopathy in rats. Methods Thirty SD rats were randomly divided into blank, control and experimental groups. The control and experimental groups were induced with diabetes by streptozotocin (STZ) intraperitoneal injection. After 6 weeks of successful modeling, the experimental group received intravitreal injection of methylene blue at a dose of [0.2 mg/(kg.d)], while the control group received an equal amount of dimethyl sulfoxide (DMSO) intravitreal injection, both continuously injected for 7 days. ELISA was used to detect the levels of retinal superoxide dismutase (SOD), 8-iso-prostaglandin F2alpha (iPF2α) and interleukin-1ß (IL-1ß) in rats. Western blot analysis was used to detect the expression of retinal extracellular signal-regulated kinase 1/2 phosphorylation (p-ERK1/2) and phosphorylated protein kinase B (p-AKT), and PAS staining was used to detect retinal morphological changes. Results Compared with the blank group rats, the retinal SOD activity in the control and experimental group rats was significantly reduced. iPF2α, IL-1ß and p-ERK1/2 level increased, while p-AKT level decreased. Compared with the control group, the SOD activity of the experimental group rats increased. iPF2α and IL-1ß level went down, while p-ERK1/2 and p-AKT level went up significantly. The overall thickness of the retinal layer and the number of retinal ganglion cells were significantly reduced. Conclusion Methylene blue improves diabetic retinopathy in rats by reducing retinal oxidative stress and enhancing ERK1/2 and AKT phosphorylation.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratas , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Interleucina-1beta/metabolismo , Azul de Metileno/farmacología , Fosforilación , Ratas Sprague-Dawley , Sistema de Señalización de MAP Quinasas , Diabetes Mellitus Experimental/tratamiento farmacológico , Superóxido Dismutasa/metabolismo
17.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902374

RESUMEN

Obtaining homozygous lines from transgenic plants is an important step for phenotypic evaluations, but the selection of homozygous plants is time-consuming and laborious. The process would be significantly shortened if anther or microspore culture could be completed in one generation. In this study, we obtained 24 homozygous doubled haploid (DH) transgenic plants entirely by microspore culture from one T0 transgenic plant overexpressing the gene HvPR1 (pathogenesis-related-1). Nine of the doubled haploids grew to maturity and produced seeds. qRCR (quantitative real-time PCR) validation showed that the HvPR1 gene was expressed differentially even among different DH1 plants (T2) from the same DH0 line (T1). Phenotyping analysis suggested that the overexpression of HvPR1 inhibited nitrogen use efficiency (NUE) only under low nitrogen treatment. The established method of producing homozygous transgenic lines will enable the rapid evaluation of transgenic lines for gene function studies and trait evaluation. As an example, the HvPR1 overexpression of DH lines also could be used for further analysis of NUE-related research in barley.


Asunto(s)
Hordeum , Hordeum/genética , Haploidia , Homocigoto , Fenotipo
18.
Nutr Cancer ; 75(2): 750-760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36495148

RESUMEN

Barley (Hordeum vulgare L.) grass has been recognized as a functional food with a wide spectrum of health-promoting properties. Supplementation with barley grass has the potential to prevent chronic diseases, such as cancer. Here, we investigated whether barley grass could protect against hepatocellular carcinoma (HCC). Our data showed that administration of barley grass juice attenuates tumor development in a hydrodynamic gene delivery-induced model of HCC. The expression levels of the immune cell markers Ptprc and Adgre1 were upregulated in the barley grass juice-treated and normal groups, compared to those in the vehicle group in the HCC model. Immune cells (CD45+, F4/80+, and CLEC4F + iNOS + cells) infiltration in the liver increased following barley grass juice administration. Our results indicate that barley grass could be beneficial for HCC alleviation, partly by regulating immune cell infiltration. The ingredients of barley grass affect immune cell infiltration in HCC, and the detailed mechanism requires further study.


Asunto(s)
Carcinoma Hepatocelular , Hordeum , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/prevención & control , Hordeum/genética , Hidrodinámica , Neoplasias Hepáticas/prevención & control , Transfección
19.
Life (Basel) ; 14(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276255

RESUMEN

As the global human population continues to increase, the use of saline-alkali land for food production is an important consideration for food security. In addition to breeding or cultivating salt-tolerant crop varieties, microorganisms are increasingly being evaluated for their ability to improve plant salt tolerance. Barley is one of the most important and salt-tolerant cereal crops and is a model system for investigating the roles of microorganisms in improving plant salt tolerance. However, a comprehensive review of the mechanisms by which microorganisms improve barley salt tolerance remains lacking. In this review, the mechanisms of barley salt tolerance improvement by microorganisms are summarized, along with a discussion of existing problems in current research and areas of future research directions. In particular, with the development of sequencing technology and the great reduction of prices, the use of omics can not only comprehensively evaluate the role of microorganisms but also evaluate the impact of the microbiome on plants, which will provide us with many opportunities and challenges in this research area.

20.
Front Plant Sci ; 13: 961445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186007

RESUMEN

Salt stress is a major abiotic stress that threatens global rice production. It is particularly important to improve salt tolerance in upland rice because of its growth environment. Upland rice landrace 17SM-19 with high salt tolerance was obtained from a previous study. In this study, an integrated analysis of transcriptome and metabolome was performed to determine the responses of the rice seedling to salt stress. When treated with 100 mm NaCl, the rice seedling growth was significantly inhibited at 5 d, with inhibition first observed in shoot dry weight (SDW). Changes in potassium (K+) content were associated with changes in SDW. In omics analyses, 1,900 differentially expressed genes (DEGs) and 659 differentially abundant metabolites (DAMs) were identified at 3 d after salt stress (DAS), and 1,738 DEGs and 657 DAMs were identified at 5 DAS. Correlation analyses between DEGs and DAMs were also conducted. The results collectively indicate that salt tolerance of upland rice landrace 17SM-19 seedlings involves many molecular mechanisms, such as those involved with osmotic regulation, ion balance, and scavenging of reactive oxygen species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...