Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Oncol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770553

RESUMEN

Accumulation of abnormal chondroitin sulfate (CS) chains in breast cancer tissue is correlated with poor prognosis. However, the biological functions of these CS chains in cancer progression remain largely unknown, impeding the development of targeted treatment focused on CS. Previous studies identified chondroitin polymerizing factor (CHPF; also known as chondroitin sulfate synthase 2) is the critical enzyme regulating CS accumulation in breast cancer tissue. We then assessed the association between CHPF-associated proteoglycans (PGs) and signaling pathways in breast cancer datasets. The regulation between CHPF and syndecan 1 (SDC1) was examined at both the protein and RNA levels. Confocal microscopy and image flow cytometry were employed to quantify macropinocytosis. The effects of the 6-O-sulfated CS-binding peptide (C6S-p) on blocking CS functions were tested in vitro and in vivo. Results indicated that the expression of CHPF and SDC1 was tightly associated within primary breast cancer tissue, and high expression of both genes exacerbated patient prognosis. Transforming growth factor beta (TGF-ß) signaling was implicated in the regulation of CHPF and SDC1 in breast cancer cells. CHPF supported CS-SDC1 stabilization on the cell surface, modulating macropinocytotic activity in breast cancer cells under nutrient-deprived conditions. Furthermore, C6S-p demonstrated the ability to bind CS-SDC1, increase SDC1 degradation, suppress macropinocytosis of breast cancer cells, and inhibit tumor growth in vivo. Although other PGs may also be involved in CHPF-regulated breast cancer malignancy, this study provides the first evidence that a CS synthase participates in the regulation of macropinocytosis in cancer cells by supporting SDC1 expression on cancer cells.

2.
Am J Cancer Res ; 13(7): 2998-3012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559985

RESUMEN

Aberrant chondroitin sulfate (CS) accumulation in glioblastoma (GBM) tissue has been documented, but the role of excessive CS in GBM progression and whether it can be a druggable target are largely unknown. The aim of this study is to clarify the biological functions of CHST11 in GBM cells, and evaluate therapeutic effects of blocking CHST11-derived chondroitin 4-sulfate (C4S). We investigated the expression of CHST11 in glioma tissue by immunohistochemistry, and analyzed CHST11 associated genes using public RNA sequencing datasets. The effects of CHST11 on aggressive cell behaviors have been studied in vitro and in vivo. We demonstrated that CHST11 is frequently overexpressed in GBM tissue, promoting GBM cell mobility and modulating C4S on GBM cells. We further discovered that CSPG4 is positively correlated with CHST11, and CSPG4 involved in CHST11-mediated cell invasiveness. In addition, GBM patients with high expression of CHST11 and CSPG4 have a significantly shorter survival time. We examined the effects of treating C4S-specific binding peptide (C4Sp) as a therapeutic agent in vitro and in vivo. C4Sp treatment attenuated GBM cell invasiveness and, notably, improved survival rate of orthotopic glioma cell transplant mice. Our results propose a possible mechanism of CHST11 in regulating GBM malignancy and highlight a novel strategy for targeting aberrant chondroitin sulfate in GBM cells.

3.
Biomed Mater ; 18(5)2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37321230

RESUMEN

Peripheral nerve regeneration (PNR) following trauma requires the reconstruction of the extracellular matrix (ECM) and the proper stimulation of growth factors. Decellularised small intestine submucosa (SIS) has been extensively used as an ECM scaffold for tissue repair, but its potential to enhance the effects of exogenous growth factors on PNR is not well understood. In this study, we evaluated the effects of SIS implantation combined with glial cell-derived growth factor (GDNF) treatment on PNR in a rat neurorrhaphy model. We found that both SIS and regenerating nerve tissue expressed syndecan-3 (SDC3), one of major heparan sulphate proteoglycans in nerve tissue, and that SDC3 interacted with GDNF in the regenerating nerve tissue. Importantly, the SIS-GDNF combined treatment enhanced the recovery of neuromuscular function andß3-tubulin-positive axonal outgrowth, indicating an increase in the number of functioning motor axons connecting to the muscle after neurorrhaphy. Our findings suggest that the SIS membrane offers a new microenvironment for neural tissue and promotes neural regeneration based on SDC3-GDNF signalling, providing a potential therapeutic approach for PNR.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Nervios Periféricos , Ratas , Animales , Sindecano-3 , Regeneración Nerviosa , Intestino Delgado
4.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175152

RESUMEN

Versican is a chondroitin sulfate proteoglycan (CSPG), which deposits in perineurium as a physical barrier and prevents the growth of axons out of the fascial boundary. Several studies have indicated that the chondroitin sulfate (CS) chains on versican have several possible functions beyond the physical barrier, including the ability to stabilize versican core protein in the extracellular matrix. As chondroitin sulfate synthase 1 (Chsy1) is a crucial enzyme for CS elongation, we hypothesized that in vivo knockdown of Chsy1 at peripheral nerve lesion site may decrease CS and versican accumulation, and result in accelerating neurite regeneration. In the present study, end-to-side neurorrhaphy (ESN) in Wistar rats was used as an in vivo model of peripheral nerve injury to evaluate nerve regeneration after surgical intervention. The distribution and expression of versican and Chsy1 in regenerating axons after ESN was studied using confocal microscopy and western blotting. Chsy1 was silenced at the nerve lesion (surgical) site using in vivo siRNA transfection. The results indicated that Chsy1 was successfully silenced in nerve tissue, and its downregulation was associated with functional recovery of compound muscle action potential. Silencing of Chsy1 also decreased the accumulation of versican core protein, suggesting that transient treating of Chsy1-siRNA may be an alternative and an effective strategy to promote injured peripheral nerve regeneration.


Asunto(s)
Sulfatos de Condroitina , Versicanos , Ratas , Animales , Versicanos/genética , Sulfatos de Condroitina/farmacología , Ratas Wistar , Axones/metabolismo , Regeneración Nerviosa , ARN Interferente Pequeño/farmacología
5.
Anat Sci Educ ; 16(5): 858-869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36905326

RESUMEN

Understanding the three-dimensional (3D) structure of the human skull is imperative for medical courses. However, medical students are overwhelmed by the spatial complexity of the skull. Separated polyvinyl chloride (PVC) bone models have advantages as learning tools, but they are fragile and expensive. This study aimed to reconstruct 3D-printed skull bone models (3D-PSBs) using polylactic acid (PLA) with anatomical characteristics for spatial recognition of the skull. Student responses to 3D-PSB application were investigated through a questionnaire and tests to understand the requirement of these models as a learning tool. The students were randomly divided into 3D-PSB (n = 63) and skull (n = 67) groups to analyze pre- and post-test scores. Their knowledge was improved, with the gain scores of the 3D-PSB group (50.0 ± 3.0) higher than that of the skull group (37.3 ± 5.2). Most students agreed that using 3D-PSBs with quick response codes could improve immediate feedback on teaching (88%; 4.41 ± 0.75), while 85.9% of the students agreed that individual 3D-PSBs clarified the structures hidden within the skull (4.41 ± 0.75). The ball drop test revealed that the mechanical strength of the cement/PLA model was significantly greater than that of the cement or PLA model. The prices of the PVC, cement, and cement/PLA models were 234, 1.9, and 10 times higher than that of the 3D-PSB model, respectively. These findings imply that low-cost 3D-PSB models could revolutionize skull anatomical education by incorporating digital technologies like the QR system into the anatomical teaching repertoire.


Asunto(s)
Anatomía , Estudiantes de Medicina , Humanos , Anatomía/educación , Impresión Tridimensional , Cráneo/diagnóstico por imagen , Poliésteres , Modelos Anatómicos
6.
J Neurosurg ; 138(5): 1325-1337, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152319

RESUMEN

OBJECTIVE: The molecular pathogenesis of malignant gliomas, characterized by diverse tumor histology with differential prognosis, remains largely unelucidated. An APOBEC3 deletion polymorphism, with a deletion in APOBEC3B, has been correlated to risk and prognosis in several cancers, but its role in glioma is unclear. The authors aimed to examine the clinical relevance of the APOBEC3 deletion polymorphism to glioma risk and survival in a glioma patient cohort in Taiwan. METHODS: The authors detected deletion genotypes in 403 glioma patients and 1365 healthy individuals in Taiwan and correlated the genotypes with glioma risk, clinicopathological factors, patient survival, and patient sex. APOBEC3 gene family expression was measured and correlated to the germline deletion. A nomogram model was constructed to predict patient survival in glioma. RESULTS: The proportion of APOBEC3B-/- and APOBEC3B+/- genotypes was higher in glioblastoma (GBM) patients than healthy individuals and correlated with higher GBM risk in males. A higher percentage of cases with APOBEC3B- was observed in male than female glioma patients. The presence of APOBEC3B-/- was correlated with better overall survival (OS) in male astrocytic glioma patients. No significant correlation of the genotypes to glioma risk and survival was observed in the female patient cohort. Lower APOBEC3B expression was observed in astrocytic glioma patients with APOBEC3B-/- and was positively correlated with better OS. A 5-factor nomogram model was constructed based on male patients with astrocytic gliomas in the study cohort and worked efficiently for predicting patient OS. CONCLUSIONS: The germline APOBEC3 deletion was associated with increased GBM risk and better OS in astrocytic glioma patients in the Taiwan male population. The APOBEC3B deletion homozygote was a potential independent prognostic factor predicting better survival in male astrocytic glioma patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Masculino , Femenino , Pronóstico , Taiwán , Glioma/patología , Polimorfismo Genético , Glioblastoma/patología , Citidina Desaminasa , Antígenos de Histocompatibilidad Menor , Desaminasas APOBEC
7.
Immunology ; 166(3): 310-326, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35322421

RESUMEN

Ability of IL-17-producing CD8+ T cells (Tc17) to transform into cytotoxic anti-tumour effectors makes them a promising candidate for immune effector cell (IEC) therapy. However, key factors regulating Tc17 reprogramming remain poorly defined, hindering translation of Tc17-based IEC use from bench to bedside. We probed the effects of multiple cytokines and underlying signalling pathways on Tc17 cells and identified pivotal role for IL-4 and PI3K/AKT in promoting Tc17 transformation into cytotoxic IFN-γ-producing IECs, an effect dependent on Eomes expression. IL-4 not only triggered Tc17 cytotoxicity, but also induced cell expansion, which significantly improved the antitumour potential of Tc17 cells compared to that of IFN-γ-producing CD8+ T cells (Tc1) in a murine model. Furthermore, IL-4/AKT signalling drove the upregulation of the T-cell receptor-associated transmembrane adaptor 1 (Trat1) in Tc17 cells to promote IL-4-induced T-cell receptor stabilization and Tc17 cytotoxicity. Finally, we proposed a possible procedure to expand human Tc17 from peripheral blood of cancer patients, and confirmed the function of IL-4 in Tc17 reprogramming. Collectively, these results document a novel IL-4/AKT/Eomes/Trat1 axis that promotes expansion and transformation of Tc17 cells into cytotoxic effectors with a therapeutic potential. IL-4 priming of Tc17 cells should be further explored as a cell therapy engineering strategy to generate IECs to augment anti-tumour responses.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-4 , Traslado Adoptivo , Animales , Humanos , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Am J Cancer Res ; 11(11): 5472-5484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34873473

RESUMEN

Alteration of extracellular glycosylation is a hallmark of malignant characteristics. In this study, we revealed that fucosyltransferase 8 (FUT8), an enzyme that mediates the core fucosylation of N-linked glycosylation, is an important regulator of malignant characteristics in human glioma that acts by modifying the activities of both the HGF receptor (MET) and epidermal growth factor receptor (EGFR). mRNA and protein expression levels of FUT8 were frequently upregulated in gliomas, and these events were showed positive correlations with advanced tumor grade, recurrence, and decreased overall survival. Silencing FUT8 expression in glioma cells suppressed cell growth, migration, and invasion, whereas overexpression of FUT8 was sufficient to enhance these phenotypes. Mechanistic investigations revealed that FUT8 was involved in the alteration of fucosylation status that was attached to MET and EGFR, changing MET responses after HGF stimulation, as well as in the transactivation of EGFR. Importantly, altering FUT8 expression or using the fucosylation inhibitor 2F-peracetyl-fucose sensitized the efficacy of of temozolomide (TMZ) therapy. Collectively, these results suggested that FUT8 dysregulation contributed to the malignant behaviors of glioma cells and provide novel insights into the significance of fucosylation in receptor tyrosine kinase activity and TMZ resistance.

9.
Cells ; 10(12)2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34944101

RESUMEN

Chondroitin sulfate (CS) is a major component of the extracellular matrix found to be abnormally accumulated in several types of cancer tissues. Previous studies have indicated that CS synthases and modification enzymes are frequently elevated in human gliomas and are associated with poor prognosis. However, the underlying mechanisms of CS in cancer progression and approaches for interrupting its functions in cancer cells remain largely unexplored. Here, we have found that CS was significantly enriched surrounding the vasculature in a subset of glioma tissues, which was akin to the perivascular niche for cancer-initiating cells. Silencing or overexpression of the major CS synthase, chondroitin sulfate synthase 1 (CHSY1), significantly regulated the glioma cell invasive phenotypes and modulated integrin expression. Furthermore, we identified CD44 as a crucial chondroitin sulfate proteoglycan (CSPG) that was modified by CHSY1 on glioma cells, and the suppression of CS formation on CD44 by silencing the CHSY1-inhibited interaction between CD44 and integrin ß1 on the adhesion complex. Moreover, we tested the CS-specific binding peptide, resulting in the suppression of glioma cell mobility in a fashion similar to that observed upon the silencing of CHSY1. In addition, the peptide demonstrated significant affinity to CD44, promoted CD44 degradation, and suppressed integrin ß1 expression in glioma cells. Overall, this study proposes a potential regulatory loop between CS, CD44, and integrin ß1 in glioma cells, and highlights the importance of CS in CD44 stability. Furthermore, the targeting of CS by specific binding peptides has potential as a novel therapeutic strategy for glioma.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Glioma/metabolismo , Glioma/patología , Receptores de Hialuranos/metabolismo , Integrina beta1/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Glioma/irrigación sanguínea , Glioma/genética , Glucuronosiltransferasa/metabolismo , Humanos , Ratones Endogámicos C57BL , Enzimas Multifuncionales/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Clasificación del Tumor , Invasividad Neoplásica , Péptidos/metabolismo , Fenotipo , Proteolisis
10.
Front Pharmacol ; 12: 785944, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867418

RESUMEN

Adlay (Coix lacryma-jobi var. ma-yuen (Rom. Caill.) Stapf) seeds are edible crop classified as Traditional Chinese Medicine (TCM). Adlay bran (AB) is one of the wastes generated during adlay refining processes. In this work, supercritical fluid extract of AB (AB-SCF) was investigated to reveal its lipid regulating potential and decode its bifunctional ingredients. AB-SCF×0.5 (30.84 mg/kg/body weight), AB-SCF×1 (61.67 mg/kg/BW), AB-SCF×5 (308.35 mg/kg/BW) and AB-SCF×10 (616.70 mg/kg/BW) were administrated to high fat-diet (HFD) induced hyperglycemic hamsters for 8 weeks. The results indicates that AB-SCF displays a prevention of dramatic body weight gains, lower levels of serum TG, TC, LDL-C and higher in HDL-C, amelioration of cardiovascular risk, alleviation of hepatic TG, TC and lipid peroxidation, and enhancement on cholesterol metabolism with higher bile acid excretion. Investigations on energy metabolic mechanism demonstrates that the hyperlipidemia mitigating capacities of AB-SCF are up-regulated on lipoprotein lipase, AMPK, p-AMPK and down-regulated at fatty acid synthase. Major bio-functional lipid compositions are identified as linoleic acid (28.59%) and oleic acid (56.95%). Non-lipid chemical and active markers are confirmed as 3-O-(trans-4-feruloyl)-ß-sitostanol (1463.42 ppm), 3-O-(cis-4-feruloyl)-ß-sitostanol (162.60 ppm), and ß-sitosterol (4117.72 ppm). These compositions might synergistically responsible for the mentioned activities and can be regarded as analytical targets in quality control. AB-SCF may be considered as a promising complementary supplement, and developed as a functional food or new botanical drug in the future.

11.
Fundam Clin Pharmacol ; 35(6): 1032-1044, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34545633

RESUMEN

Epilepsy, which is caused by abnormal neuronal firing in the brain, is a common neurological disease and affects motor and cognitive functions. Excessive levels of glutamate and insufficient levels of inhibitory GABA are involved in its pathophysiology. Valproic acid (Val), a GABAergic agonist, is one of the first-line antiepileptic drugs, but it shows many adverse side effects at the clinical dose. Clavulanic acid (CA), a ß-lactamase inhibitor, has been demonstrated to increase glutamate transporter-1 expression. This study evaluated the effects of CA and Val in an epilepsy rat model. Male Wistar rats received intraperitoneal injections of pentylenetetrazol (PTZ, 35 mg/kg, every other day, IP, for 13 days) to induce kindling epilepsy. After four times of PTZ injection, rats received daily treatment with CA (1 or 10 mg/kg, IP), Val (50 or 100 mg/kg, IP), or the combination of CA (1 mg/kg) and Val (50 mg/kg) for 7 consecutive days. Motor, learning, and memory functions were measured. Rats with PTZ-induced kindling exhibited seizures, motor dysfunction, cognitive impairment, and cell loss and reduction of neurogenesis in the hippocampus. Neither 1 mg/kg CA nor 50 mg/kg Val treatment was effective in alleviating behavioral and neuronal deficits. However, treatment with 10 mg/kg CA, 100 mg/kg Val, and the combination of 1 mg/kg CA and 50 mg/kg Val improved these behavioral and neuronal deficits. Particularly, the combination of CA and Val showed synergistic effects on seizure suppression, suggesting the potential for treating epilepsy and related neuronal damage and motor and cognitive deficits.


Asunto(s)
Epilepsia , Excitación Neurológica , Animales , Ácido Clavulánico , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Masculino , Pentilenotetrazol , Ratas , Ratas Wistar , Ácido Valproico/toxicidad
12.
Exp Physiol ; 106(8): 1814-1828, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34086374

RESUMEN

NEW FINDINGS: What is the central question of this study? Imbalance of activities between GABAergic and glutamatergic systems is involved in epilepsy. It is not known whether simultaneously increasing GABAergic and decreasing glutamatergic activity using valproic acid and ceftriaxone, respectively, leads to better seizure control. What is the central question of this study? Ceftriaxone suppressed seizure and cognitive deficits and restored neuronal density and the number of newborn cells in the hippocampus in a rat model of epilepsy. Combined treatment with ceftriaxone and valproic acid showed additive effects in seizure suppression. ABSTRACT: The pathophysiology of epilepsy is typically considered as an imbalance between inhibitory GABA and excitatory glutamate neurotransmission. Valproic acid (Val), a GABA agonist, is one of the first-line antiepileptic drugs in the treatment of epilepsy, but it exhibits adverse effects. Ceftriaxone (CEF) elevates expression of glutamate transporter-1, enhances the reuptake of synaptic glutamate, increases the number of newborn cells and exhibits neuroprotective effects in animal studies. In this study, we evaluated effects of the combination of CEF and Val on behavioural and neuronal measures in a rat epilepsy model. Male Wistar rats were injected i.p. with pentylenetetrazol (35 mg/kg, every other day for 13 days) to induce the epilepsy model. Ceftriaxone (10 or 50 mg/kg), Val (50 or 100 mg/kg) or the combination of CEF and Val were injected daily after the fourth pentylenetetrazol injection for seven consecutive days. Epileptic rats exhibited seizure and impairments in motor and cognitive functions. Treatment with CEF and Val reduced the seizure and enhanced motor and cognitive functions in a dose-dependent manner. The combination of CEF (10 mg/kg) and Val (50 mg/kg) improved behaviours considerably. Histologically, compared with control animals, epileptic rats exhibited lower neuronal density and a reduction in hippocampal newborn cells but higher apoptosis in the basolateral amygdala, all of which were restored by the treatment with CEF, Val or the combination of CEF and Val. The study findings demonstrated that the combination of low doses of CEF and Val has beneficial effects on seizure suppression, neuroprotection and improvement in motor and cognitive functions in epilepsy.


Asunto(s)
Ceftriaxona , Epilepsia , Animales , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Epilepsia/tratamiento farmacológico , Masculino , Neuronas/fisiología , Ratas , Ratas Wistar , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico
13.
Am J Cancer Res ; 11(3): 812-826, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791155

RESUMEN

Breast cancer is the leading cause of cancer-related deaths in women worldwide. Several studies have indicated that abnormal chondroitin sulfate (CS) chains accumulate in breast cancer tissues; however, the functions and dysregulation of CS synthases are largely unknown. Here, we demonstrate that chondroitin polymerising factor (CHPF) is frequently upregulated in breast cancer tissues and that its high expression is positively associated with tumor metastasis, high stages, and short survival time. CHPF modulates CS formation in breast cancer cells. Additionally, we found that CHPF promotes tumor growth and metastasis accompanied by an increase in G-CSF levels and the number of myeloid-derived suppressor cells in tumor tissue. We revealed that tumor cell-derived G-CSF is co-localised with CS on the cell surface. Interestingly, our study is the first to identify that syndecan-4 (SDC4) is modified by CHPF and that it is involved in CHPF-mediated phenotypes. Moreover, breast cancer patients with high expression of both SDC4 and CHPF had worse overall survival compared to other subsets, which implied the synergistic effects of these two genes. In summary, our results indicated that the upregulation of CHPF in breast cancer contributes to the malignant behaviour of cancer cells, thereby providing novel insights on the significance of CHPF-modified SDC4 in breast cancer pathogenesis.

14.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809195

RESUMEN

Aberrant composition of glycans in the tumor microenvironment (TME) and abnormal expression of extracellular matrix proteins are hallmarks of hepatocellular carcinoma (HCC); however, the mechanisms responsible for establishing the TME remain unclear. We demonstrate that the chondroitin polymerizing factor (CHPF), an enzyme that mediates the elongation of chondroitin sulfate (CS), is a critical elicitor of the malignant characteristics of HCC as it modifies the potent tumor suppressor, decorin (DCN). CHPF expression is frequently downregulated in HCC tumors, which is associated with the poor overall survival of HCC patients. We observed that restoring CHPF expression suppressed HCC cell growth, migration, and invasion in vitro and in vivo. Mechanistic investigations revealed that TGF-ß signaling is associated with CHPF-induced phenotype changes. We found that DCN, as a TGF-ß regulator, is modified by CHPF, and that it affects the distribution of DCN on the surface of HCC cells. Importantly, our results confirm that CHPF and DCN expression levels are positively correlated in primary HCC tissues. Taken together, our results suggest that CHPF dysregulation contributes to the malignancy of HCC cells, and our study provides novel insights into the significance of CS, which affects DCN expression in the TME.

15.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33673008

RESUMEN

Recently, Toll-like receptors (TLRs), a family of pattern recognition receptors, are reported as potential modulators for neuropathic pain; however, the desired mechanism is still unexplained. Here, we operated on the sciatic nerve to establish a pre-clinical rodent model of chronic constriction injury (CCI) in Sprague-Dawley rats, which were assigned into CCI and Decompression groups randomly. In Decompression group, the rats were performed with nerve decompression at post-operative week 4. Mechanical hyperalgesia and mechanical allodynia were obviously attenuated after a month. Toll-like receptor 5 (TLR5)-immunoreactive (ir) expression increased in dorsal horn, particularly in the inner part of lamina II. Additionally, substance P (SP) and isolectin B4 (IB4)-ir expressions, rather than calcitonin-gene-related peptide (CGRP)-ir expression, increased in their distinct laminae. Double immunofluorescence proved that increased TLR5-ir expression was co-expressed mainly with IB4-ir expression. Through an intrathecal administration with FLA-ST Ultrapure (a TLR5 agonist, purified flagellin from Salmonella Typhimurium, only the CCI-induced mechanical hyperalgesia was attenuated dose-dependently. Moreover, we confirmed that mu-opioid receptor (MOR) and phospho-protein kinase Cα (pPKCα)-ir expressions but not phospho-protein kinase A RII (pPKA RII)-ir expression, increased in lamina II, where they mostly co-expressed with IB4-ir expression. Go 6976, a potent protein kinase C inhibitor, effectively reversed the FLA-ST Ultrapure- or DAMGO-mediated attenuated trend towards mechanical hyperalgesia by an intrathecal administration in CCI rats. In summary, our current findings suggest that nerve decompression improves CCI-induced mechanical hyperalgesia that might be through the cross-talk of TLR5 and MOR in a PKCα-dependent manner, which opens a novel opportunity for the development of analgesic therapeutics in neuropathic pain.


Asunto(s)
Hiperalgesia/metabolismo , Proteína Quinasa C-alfa/metabolismo , Receptores Opioides mu/metabolismo , Receptor Toll-Like 5/metabolismo , Animales , Constricción , Activación Enzimática , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Masculino , Dimensión del Dolor/métodos , Ratas Sprague-Dawley , Receptor Cross-Talk , Nervio Ciático/fisiopatología , Transducción de Señal , Asta Dorsal de la Médula Espinal/metabolismo
16.
Histochem Cell Biol ; 155(3): 355-367, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33170350

RESUMEN

Syndecan-3 (SDC3) and Syndecan-4 (SDC4) are distributed throughout the nervous system (NS) and are favourable factors in motor neuron development. They are also essential for regulation of neurite outgrowth in the CNS. However, their roles in the reconstruction of the nodes of Ranvier after peripheral nerve injury (PNI) are still unclear. Present study used an in vivo model of end-to-side neurorrhaphy (ESN) for 1-3 months. The recovery of neuromuscular function was evaluated by grooming test. Expression and co-localization of SDC3, SDC4, and Nav1.6 channel (Nav1.6) at regenerating axons were detected by proximity ligation assay and confocal microscopy after ESN. Time-of-flight secondary ion mass spectrometry was used for imaging ions distribution on tissue. Our data showed that the re-clustering of sodium and Nav1.6 at nodal regions of the regenerating nerve corresponded to the distribution of SDC3 after ESN. Furthermore, the re-establishment of sodium and Nav1.6 correlated with the recovery of muscle power 3 months after ESN. This study suggested syndecans may involve in stabilizing Nav1.6 and further modulate the distribution of sodium at nodal regions after remyelination. The efficiency of sodium re-clustering was improved by the assistance of anionic syndecan, resulting in a better functional repair of PNI.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Procedimientos Neuroquirúrgicos , Nódulos de Ranvier/metabolismo , Sodio/metabolismo , Sindecano-3/metabolismo , Animales , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/análisis , Canal de Sodio Activado por Voltaje NAV1.6/genética , Regeneración Nerviosa , Ratas , Ratas Wistar , Sodio/análisis , Sindecano-3/análisis , Sindecano-3/genética
17.
Oncogenesis ; 9(2): 9, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019907

RESUMEN

Chondroitin sulfate synthases, a family of enzyme involved in chondroitin sulfate (CS) polymerization, are dysregulated in various human malignancies, but their roles in glioma remain unclear. We performed database analysis and immunohistochemistry on human glioma tissue, to demonstrate that the expression of CHSY1 was frequently upregulated in glioma, and that it was associated with adverse clinicopathologic features, including high tumor grade and poor survival. Using a chondroitin sulfate-specific antibody, we showed that the expression of CHSY1 was significantly associated with CS formation in glioma tissue and cells. In addition, overexpression of CHSY1 in glioma cells enhanced cell viability and orthotopic tumor growth, whereas CHSY1 silencing suppressed malignant growth. Mechanistic investigations revealed that CHSY1 selectively regulates PDGFRA activation and PDGF-induced signaling in glioma cells by stabilizing PDGFRA protein levels. Inhibiting PDGFR activity with crenolanib decreased CHSY1-induced malignant characteristics of GL261 cells and prolonged survival in an orthotopic mouse model of glioma, which underlines the critical role of PDGFRA in mediating the effects of CHSY1. Taken together, these results provide information on CHSY1 expression and its role in glioma progression, and highlight novel insights into the significance of CHSY1 in PDGFRA signaling. Thus, our findings point to new molecular targets for glioma treatment.

18.
Neuroscience ; 429: 282-292, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689489

RESUMEN

Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and ß3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as ß3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and ß3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the ß3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.


Asunto(s)
Melatonina , Animales , Citoesqueleto , Melatonina/farmacología , Ratones , Regeneración Nerviosa , Ratas , Ratas Wistar , Receptores de Melatonina
19.
Am J Cancer Res ; 9(2): 347-362, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906633

RESUMEN

Abnormal expression of dermatan sulfate epimerase (DSE) has been found in many types of cancer, while its expression and biological functions in hepatocellular carcinoma (HCC) progression remains obscure. Here we report that DSE, the enzyme that catalyzes the conversion of chondroitin sulfate (CS) to dermatan sulfate (DS), is a critical mediator of malignant character in HCC, through regulation of CCL5 signaling. DSE mRNA and protein were downregulated frequently in HCC tumors, where these events were associated with advanced tumor stages, metastases, and poor survival. DSE-mediated tumor growth was evaluated in immune-deficient and immune-complement mice models. Restoring DSE expression in HCC cells suppressed tumor growth, as well as decreased IL-1ß and CCL5 levels in transplanted tumor tissue. Mechanistic investigations revealed that the expression of DSE altered CCL5 signaling and cell surface binding in HCC cells. Accordingly, DSE suppressed CCL5-induced cell growth, migration, and invasion, whereas silencing of DSE enhanced CCL5-triggered malignant phenotypes. Inhibiting CCR1 activity with BX471 decreased CCL5-induced malignant characters caused by siRNA-mediated knockdown of DSE in HCC cells, establishing the critical role of the CCL5/CCR1 axis in mediating the effects of DSE expression. Taken together, our results suggest that DSE dysregulation contributes to the malignant behavior of HCC cells. This provides novel insight into the significance of DSE in CCL5 signaling and HCC pathogenesis.

20.
Neurotoxicology ; 71: 60-74, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30583000

RESUMEN

Peripheral neuropathy, a chronic complication of diabetes mellitus (DM), is often accompanied by the onset of severe pain symptoms that affect quality of life. However, the underlying mechanisms remain elusive. In the present study, we used Sprague-Dawley rats to establish a rodent model of the human type 1 DM by a single intraperitoneal (i.p.) injection with streptozotocin (STZ) (60 mg/kg). Hypersensitivity, including hyperalgesia and allodynia, developed in the STZ-induced diabetic rats. Cutaneous innervation exhibited STZ-induced reductions of protein gene product 9.5-, peripherin-, and neurofilament 200-immunoreactivity (IR) subepidermal nerve fibers (SENFs). Moreover, the decreases of substance P (SP)- and calcitonin gene-related peptide (CGRP)-IR SENFs were distinct gathered from the results of extracellular signal-regulated kinase 1 and 2 (ERK1/2)- and phosphorylated ERK1/2 (pERK1/2)-IR SENFs in STZ-induced diabetic rats. Double immunofluorescence studies demonstrated that STZ-induced pERK1/2-IR was largely increased in SENFs where only a small portion was colocalized with SP- or CGRP-IR. By an intraplantar (i. pl.) injection with a MEK inhibitor, U0126 (1,4-Diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), hyperalgesia was attenuated in a dose-responsive manner. Botulinum toxin serotype A had dose-dependent analgesic effects on STZ-induced hyperalgesia and allodynia, which exhibited equivalent results as the efficacy of transient receptor potential vanilloid (TRPV) channel antagonists. Morphological evidence further confirmed that STZ-induced SP-, CGRP- and pERK1/2-IR were reduced in SENFs after pharmacological interventions. From the results obtained in this study, it is suggested that increases of pERK1/2 in SENFs may participate in the modulation of TRPV channel-mediated neurogenic inflammation that triggers hyperalgesia in STZ-induced diabetic rats. Therefore, ERK1/2 provides a potential therapeutic target and efficient pharmacological strategies to address hyperglycemia-induced neurotoxicity.


Asunto(s)
Neuropatías Diabéticas/metabolismo , Hiperalgesia/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fibras Nerviosas/metabolismo , Animales , Neuropatías Diabéticas/inducido químicamente , Neuropatías Diabéticas/complicaciones , Hiperalgesia/etiología , Masculino , Fosforilación , Ratas Sprague-Dawley , Estreptozocina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...