Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(34): 30929-30938, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37663487

RESUMEN

Aluminum-based flameless ration heaters (AFRHs) are heating elements in food packaging. Water is used to activate AFRHs. The material properties of each region of AFRHs were determined by X-ray diffraction, scanning electron microscopy, and hydrogen and heat generation. The results show that the internal cross-section shows stratification with hydrogen and heat production capacities of 105.2 ± 9.7 mL/g and 1435.0 ± 30.3 J/g for the outer layer, 27.1 ± 4.4 mL/g and 80.4 ± 3.1 J/g for the inner layer, and 1.1 ± 0.01 mL/g and 1.2 ± 0.05 J/g for the middle layer, respectively. According to the correspondence between aluminum and hydrogen in the aluminum-water reaction relationship, the reaction efficiency of the outer layer and the inner layer is as low as 64 and 80%, which is an indication of low reaction efficiency. To analyze the reasons for low reaction efficiency, a pore channel model of 3.5 nm tricalcium aluminate (C3A) was developed using molecular dynamics (MD) to reveal the adsorption behavior of the activator in the pore channel. The results show that the activator is subject to solid surface adsorption in the pore channel with a low diffusion coefficient. Oxygen atoms on the surface adsorb hydrogen atoms to form hydrogen bonds and sodium ions to form ionic bonds with calcium ions. This increases the retention time of the activator on the surface. The MD results explain the low reaction efficiency of AFRHs at the microscopic scale. Moreover, it provides ideas and a basis for the optimization of AFRHs.

2.
Crit Rev Food Sci Nutr ; 63(27): 8720-8736, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35389273

RESUMEN

Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.


Asunto(s)
Calidad de los Alimentos , Vapor , Calor , Frutas , Tecnología
3.
PLoS One ; 15(8): e0237169, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32797059

RESUMEN

Compared to the integer-order modeling, the fractional-order modeling can achieve higher accuracy for designing and analyzing the DC-DC power converters. However, its applications in pulse width modulation (PWM) converters are limited due to the computational complexities. In this paper, a modified fractional-order modeling methodology for DC-DC converters is proposed, and its effectiveness is verified on the fractional-order positive Luo converters. Instead of using fractional-order calculus, the proposed methodology analyzes the harmonic components of the PWM converters by utilizing the non-linear vector differential equations of the periodically time-variant system. The final solution of the state variables is composed of two parts: the steady-state solution and the transient solution. The approximate steady state solution can be obtained by using the equivalent small parameter (ESP) method and the harmonic balance theory, while the main part of the transient solution can be obtained according to the explicit Grünwald-Letnikov (GL) approximation. In addition, the influence of the fractional orders on the performance of the DC-DC converters, and on the dynamic behaviors of the fractional-orders systems are also discussed in this paper. Compared to the conventional fractional-order numerical models, the proposed model is able to present the time-domain information more precisely, which helps to better reveal and analyze the non-linear behaviors of the DC-DC converters. The effectiveness of the work is demonstrated by the simulation and experimental results of the equivalent circuits built with fractional-order components.


Asunto(s)
Suministros de Energía Eléctrica , Modelos Teóricos , Algoritmos , Simulación por Computador
4.
ISA Trans ; 97: 458-473, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31331656

RESUMEN

This paper considers fixed-time control problem of nonstrict-feedback nonlinear system subjected to deadzone and output constraint. First, tan-type Barrier Lyapunov function (BLF) is constructed to keep system output within constraint. Next, unknown nonlinear function is approximated by radial basis function neural network (RBFNN). Using the property of Gaussian radial basis function, the upper bound of the term containing the unknown nonlinear function is derived and the updating law is proposed to estimate the square of the norm of the neural network weights. Then, virtual control inputs are developed using backstepping design and their derivatives are obtained by fixed-time differentiator. Finally, the actual control input is designed based on deadzone inverse approach. Lyapunov stability analysis shows that the presented method guarantees fixed-time convergence of the tracking error to a small neighborhood around zero while all the other closed-loop signals keep bounded. The presented control strategy addresses algebraic-loop problem, overcomes explosion of complexity and reduces the number of adaptation parameters, which is easy to be implemented with less computation burden. The presented control scheme is applied to academic system, real electromechanical system and aircraft longitudinal system and simulation results demonstrate its effectiveness.

5.
PLoS One ; 12(4): e0175645, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28406966

RESUMEN

This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme.


Asunto(s)
Redes Neurales de la Computación , Dinámicas no Lineales , Simulación por Computador , Retroalimentación , Análisis de Elementos Finitos
6.
PLoS One ; 9(4): e93838, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24714386

RESUMEN

In this paper, the synchronization problem for a class of discrete-time complex-valued neural networks with time-varying delays is investigated. Compared with the previous work, the time delay and parameters are assumed to be time-varying. By separating the real part and imaginary part, the discrete-time model of complex-valued neural networks is derived. Moreover, by using the complex-valued Lyapunov-Krasovskii functional method and linear matrix inequality as tools, sufficient conditions of the synchronization stability are obtained. In numerical simulation, examples are presented to show the effectiveness of our method.


Asunto(s)
Simulación por Computador , Redes Neurales de la Computación , Algoritmos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...