Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(8)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628672

RESUMEN

World-wide, rice (Oryza sativa L.) is an important food source, and its production is often adversely affected by salinity. Therefore, to ensure stable rice yields for global food security, it is necessary to understand the salt tolerance mechanism of rice. The present study focused on the expression pattern of the rice mismatch repair gene post-meiotic segregation 1 (OsPMS1), studied the physiological properties and performed transcriptome analysis of ospms1 mutant seedlings in response to salt stress. Under normal conditions, the wild-type and ospms1 mutant seedlings showed no significant differences in growth and physiological indexes. However, after exposure to salt stress, compared with wild-type seedlings, the ospms1 mutant seedlings exhibited increased relative water content, relative chlorophyll content, superoxide dismutase (SOD) activity, K+ and abscisic acid (ABA) content, and decreased malondialdehyde (MDA) content, Na+ content, and Na+/K+ ratio, as well as decreased superoxide anion (O2-) and hydrogen peroxide (H2O2) accumulation. Gene ontology (GO) analysis of the differentially expressed genes (DEGs) of ospms1 mutant seedlings treated with 0 mM and 150 mM NaCl showed significant enrichment in biological and cytological processes, such as peroxidase activity and ribosomes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the DEGs specifically enriched ascorbate and aldarate metabolism, flavone and flavonol biosynthesis, and glutathione metabolism pathways. Further quantitative real-time reverse transcription-PCR (qRT-PCR) analysis revealed significant changes in the transcription levels of genes related to abscisic acid signaling (OsbZIP23, OsSAPK6, OsNCED4, OsbZIP66), reactive oxygen scavenging (OsTZF1, OsDHAR1, SIT1), ion transport (OsHAK5), and osmoregulation (OsLEA3-2). Thus, the study's findings suggest that the ospms1 mutant tolerates salt stress at the seedling stage by inhibiting the accumulation of reactive oxygen species, maintaining Na+ and K+ homeostasis, and promoting ABA biosynthesis.


Asunto(s)
Ácido Abscísico , Tolerancia a la Sal , Tolerancia a la Sal/genética , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Homeostasis/genética , Iones
2.
Front Plant Sci ; 13: 1068769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531377

RESUMEN

Cadmium is one of the most common heavy metal contaminants found in agricultural fields. MutSα, MutSß, and MutSγ are three different MutS-associated protein heterodimer complexes consisting of MSH2/MSH6, MSH2/MSH3, and MSH2/MSH7, respectively. These complexes have different mismatch recognition properties and abilities to support MMR. However, changes in mismatch repair genes (OsMSH2, OsMSH3, OsMSH6, and OsMSH7) of the MutS system in rice, one of the most important food crops, under cadmium stress and their association with E2Fs, the key transcription factors affecting cell cycles, are poorly evaluated. In this study, we systematically categorized six rice E2Fs and confirmed that OsMSHs were the downstream target genes of E2F using dual-luciferase reporter assays. In addition, we constructed four msh mutant rice varieties (msh2, msh3, msh6, and msh7) using the CRISPR-Cas9 technology, exposed these mutant rice seedlings to different concentrations of cadmium (0, 2, and 4 mg/L) and observed changes in their phenotype and transcriptomic profiles using RNA-Seq and qRT-PCR. We found that the difference in plant height before and after cadmium stress was more significant in mutant rice seedlings than in wild-type rice seedlings. Transcriptomic profiling and qRT-PCR quantification showed that cadmium stress specifically mobilized cell cycle-related genes ATR, CDKB2;1, MAD2, CycD5;2, CDKA;1, and OsRBR1. Furthermore, we expressed OsE2Fs in yeasts and found that heterologous E2F expression in yeast strains regulated cadmium tolerance by regulating MSHs expression. Further exploration of the underlying mechanisms revealed that cadmium stress may activate the CDKA/CYCD complex, which phosphorylates RBR proteins to release E2F, to regulate downstream MSHs expression and subsequent DNA damage repairment, thereby enhancing the response to cadmium stress.

3.
Yi Chuan ; 43(11): 1078-1087, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34815210

RESUMEN

Cold stress is the limiting factor of rice growth and production, and it is important to clone cold stress tolerant genes and cultivate cold tolerance rice varieties. The MADS transcription factors play an important role in abiotic stress signaling in rice. This study showed that OsMADS25 was up-regulated by low temperature and abscisic acid (ABA), suggesting that OsMADS25 may be involved in ABA-dependent signaling. The OsMADS25 overexpression vector, pCambia1300-221-OsMADS25-Flag, was constructed and introduced into the rice variety Zhonghua 11 (ZH11) through Agrobacterium tumefacian-mediated genetic transformation. Two homozygous lines with high expression levels were selected for phenotypic identification. OsMADS25 overexpression lines show significantly improved cold stress tolerance and the sensitivity to ABA at the seedling stage of rice. Reactive oxygen species (ROS) was detected by diaminobenzidine (DAB) staining and nitroblue tetrazolium (NBT) staining. After treatment with cold stress, little ROS accumulation was observed in OsMADS25 overexpression lines compared to wild-type ZH11. In conclusion, OsMADS25 plays a role in scavenging reactive oxygen species (ROS) and could improve rice tolerance to cold stress involved in ABA-dependent pathway.


Asunto(s)
Respuesta al Choque por Frío , Oryza , Proteínas de Plantas , Factores de Transcripción , Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Yi Chuan ; 40(3): 171-185, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29576541

RESUMEN

Low temperature is a major factor affecting rice geographical distribution growth, development, and productivity. Cold stress mediates a series of physiological and metabolite changes, such as alterations in chlorophyll fluorescence, electrolyte leakage, reactive oxygen species (ROS), malondialdehyde (MAD), sucrose, lipid peroxides, proline, and other metabolites, plant endogenous hormones abscisic acid (ABA) and gibberellin (GA) also changes. In this review, we summarize the recent research progress on physiological and metabolic changes under low temperature, cold stress related loci and QTL reported by map-based cloning and genome-wide association analysis (GWAS), and some molecular mechanisms in response to low temperature in rice. We also discuss the future prospects on breeding cold tolerance varieties of rice.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/genética , Frío , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...