Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(15): e202320137, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38362792

RESUMEN

Membrane separation of aromatics and aliphatics is a crucial requirement in chemical and petroleum industries. However, this task presents a significant challenge due to the lack of membrane materials that can endure harsh solvents, exhibit molecular specificity, and facilitate easy processing. Herein, we present a novel approach to fabricate a covalent triazine framework (CTF) membrane by employing a mix-monomer strategy. By incorporating a spatial monomer alongside a planar monomer, we were able to subtly modulate both the pore aperture and membrane affinity, enabling preferential permeation of aromatics over aliphatics with molecular weight below 200 Dalton (Da). Consequently, we achieved successful all-liquid phase separation of aromatic/aliphatic mixtures. Our investigation revealed that the synergistic effects of size sieving and the affinity between the permeating molecules and the membrane played a pivotal role in separating these closely resembling species. Furthermore, the membrane exhibited remarkable robustness under practical operating conditions, including prolonged operation time, various feed compositions, different applied pressure, and multiple feed components. This versatile strategy offers a feasible approach to fabricate membranes with molecule selectivity toward aromatic/aliphatic mixtures, taking a significant step forward in addressing the grand challenge of separating small organic molecules through membrane technology.

2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339051

RESUMEN

The role of bHLH transcription factors in plant response to abiotic stress and regulation of flavonoid metabolism is well documented. However, to date, the bHLH transcription factor family in Iris domestica remains unreported, impeding further research on flavonoid metabolism in this plant. To address this knowledge gap, we employed bioinformatics to identify 39 IdbHLH genes and characterised their phylogenetic relationships and gene expression patterns under both drought and copper stress conditions. Our evolutionary tree analysis classified the 39 IdbHLHs into 17 subfamilies. Expression pattern analysis revealed that different IdbHLH transcription factors had distinct expression trends in various organs, suggesting that they might be involved in diverse biological processes. We found that IdbHLH36 was highly expressed in all organs (Transcripts Per Million (TPM) > 10), while only 12 IdbHLH genes in the rhizome and four in the root were significantly upregulated under drought stress. Of these, four genes (IdbHLH05, -37, -38, -39) were co-upregulated in both the rhizome and root, indicating their potential role in drought resistance. With regards to copper stress, we found that only 12 genes were upregulated. Further co-expression analysis revealed that most bHLH genes were significantly correlated with key enzyme genes involved in isoflavone biosynthesis. Thereinto, IdbHLH06 showed a significant positive correlation with IdC4H1 and Id4CL1 (p < 0.05). Furthermore, a transient expression assay confirmed that the IdbHLH06 protein was localised in the nucleus. Our findings provide new insights into the molecular basis and regulatory mechanisms of bHLH transcription factors in isoflavone biosynthesis in I. domestica.


Asunto(s)
Género Iris , Isoflavonas , Transcriptoma , Cobre/metabolismo , Género Iris/genética , Filogenia , Sequías , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Fisiológico/genética , Flavonoides , Regulación de la Expresión Génica de las Plantas
3.
Chem Asian J ; 16(22): 3624-3629, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34546656

RESUMEN

Covalent organic frameworks (COFs) are promising materials for membrane separation thanks to their adjustable topological structures and surface properties of nanopores. Herein, a melamine (Me)-doped COF membrane was fabricated by chemically doping the melamine monomer into TpPa COF, which is formed by the condensation reaction between the 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa) monomers via interfacial polymerization. The introduction of melamine monomer allows altering both the pore structure and pore surface of the TpPa COF membrane, leading to enhanced hydrogen purification performance. Specifically, the separation factor of H2 /CO2 gas mixture by using the melamine doped TpPa COF (TpPaMe COF) membrane reaches 12.7, with a hydrogen permeance of 727 GPU, in sharp contrast to the relatively low separation factor and gas permeance of 7.5 and 618 GPU of the undoped TpPa membrane. Besides, the TpPaMe COF membrane shows good running stability, with H2 /CO2 separation performance well surpasses the Robeson 2008 upper bound.

4.
Mitochondrial DNA B Resour ; 6(9): 2536-2537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377821

RESUMEN

The complete chloroplast genome of A. heterotropoides var. mandshuricum reported herein was a circular DNA molecule of 160,262 bp in length. The typical quadripartite structure of the genome consisted of a pair of inverted repeats (IRs) of 27,262 bp separated by a large single-copy (LSC) region of 88,927 bp and a small single-copy region (SSC) of 16,811 bp. The overall GC content of the genome is 38.45%, with 36.7%, 33.1%, and 43.0% in LSC, SSC, IR regions, respectively. The cp genome encoded 125 genes, including 83 protein-coding genes, 34 tRNA genes, and 8 rRNA genes. 138 SSRs were identified in the genome. Phylogenetic anlysis showed the position of A. heterotropoides var. mandshuricum is closely related to A. heterotropoides.

5.
ACS Appl Mater Interfaces ; 12(6): 7586-7594, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31967779

RESUMEN

Energy-efficient membrane technology has received tremendous attention for the separation of organic molecules; however, the separation of molecules of less than 100 Da has remained challenging. Herein, a membrane fabricated from interfacial polymerization on a polyketone support was used as an organic solvent reverse osmosis (OSRO) membrane for the separation of organic liquid mixtures. The chemically stable and highly cross-linked selective layer exhibited outstanding separation factors toward large nonpolar molecules from small polar ones with high fluxes. For example, separation factors of 8.4, 11.1, 14.9, and 38.0 were achieved toward toluene, pentane, hexane, and heptane (10 wt % in mixtures), respectively, from methanol solution at 3 MPa, with fluxes around 5 LMH. This membrane outperformed the currently available reverse osmosis membrane and organic solvent nanofiltration membranes in terms of stability and separation factor. This work promotes the development of OSRO separation of organic liquid mixtures without phase change.

6.
J Colloid Interface Sci ; 544: 230-240, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30851684

RESUMEN

Enzymes play vital roles in biological transformations due to incomparable selectivity. Enzymatic membrane reactors (EMRs) combine enzymes with membranes, and many researchers have studied the synergistic effect of EMRs exerting on enzyme performance. Before the utility of EMRs can expand from natural aqueous media to organic solvents, robust membranes must be developed to promote enzyme protection from hostile forms of media. For this study, laccase was immobilized on an organic-solvent-resistant hydroxylated polyketone (PK-OH) membrane via covalent bonds and served as a model enzyme. Ketone groups facilitated the immobilization via hydrogen bonds, leading to a high immobilization density of 462 µg/cm2. In homogeneous aqueous-organic solvents, the activity of immobilized laccase was up to 3.5 times greater than that of free laccase towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). In addition, the results also showed improved activity towards highly concentrated 2,4,6-trichlorophenol and bisphenol A (1.4 g/L). Furthermore, the activity in filtration mode showed a 240% increase over that in batch mode. The immobilized laccase maintained its activity after 40 days of storage, 10 reuse cycles, and 50 h of continuous reaction. These results show that robust polyketone based membrane support will create opportunities for the application of EMRs in aqueous-organic solvents.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Cetonas/química , Lacasa/metabolismo , Membranas Artificiales , Solventes/química , Compuestos de Bencidrilo/química , Reactores Biológicos , Catálisis , Clorofenoles/química , Estabilidad de Enzimas , Cinética , Fenoles/química , Ácidos Sulfónicos/química
7.
ACS Appl Mater Interfaces ; 10(51): 44880-44889, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30484634

RESUMEN

The cost-effective treatment of emulsified oily wastewater discharged by many industries and human societies is a great challenge. Herein, based on an aliphatic polyketone (PK) polymer with a good membrane formation ability and an intrinsic intermediate hydrophilicity, a new class of reduced PK (rPK) membranes combining an all hydrophilic and electrically neutral surface chemistry comprising ketone and hydroxyl groups, and a fibril-like morphology featuring re-entrant structure, was facilely prepared by phase separation and following fast surface reduction. The synergetic cooperation of surface chemistry and surface geometry endowed the prepared membranes with excellent superhydrophilicity, underwater superoleophobicity, and underoil superhydrophilicity, in addition to antiprotein-adhesion property. Thus, fouling-resistant and self-cleaning filtrations of challenging oil-in-water emulsions containing adhesive oil, surfactant, high salinity, and proteins were effortlessly realized with high flux (up to ∼50 000 L m-2 h-1 bar-1), slow and reversible flux decline, and low oil permeate (<20 ppm). In contrast, a commercial superhydrophilic microporous membrane made of mixed cellulose ester suffered severe fouling gradually or immediately when carrying out the emulsion filtrations due to its less than ideal surface properties. It is believed that this class of membranes with desirable superwettability, high flux, and preparation simplicity can be a potential new benchmark for high performance and large-scale oil-water separation in complex environments.

8.
ACS Appl Mater Interfaces ; 10(36): 30860-30870, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30111092

RESUMEN

Efficient treatment of difficult emulsified oil-water wastes is a global challenge. Membranes exhibiting unusual dual superlyophobicity (combined underwater superoleophobicity and underoil superhydrophobicity) are intriguing to realize high-efficiency separation of both oil-in-water and water-in-oil emulsions. For the first time, a robust polymeric membrane demonstrating dual superlyophobicity to common apolar oils was facilely fabricated via a simple one-step phase separation process using an aliphatic polyketone (PK) polymer, thanks to a conjunction of intermediate hydrophilicity and re-entrant fibril-like texture upon the prepared PK membrane. Further chemical modification to improve surface hydrophilicity slightly can enable dual superlyophobicity to both apolar and polar oils. It is found that a nonwetting composite state of oil against water or water against oil was obtainable on the membrane surfaces only when the probe liquids possess an equilibrium contact angle (θow or θwo) larger than the critical re-entrant angle of the textured surfaces (73°), which can explain the existences of dual superlyophobicity and also the nonwetting to fully wetting transitions. A simple design chart was developed to map out the operational windows of material hydrophilicity and re-entrant geometry, that is, a possible zone, to help in the rational design of similar interfacial systems from various materials. Switchable filtrations of oil-in-water and water-in-oil nanoemulsions were achieved readily with both high flux and high rejection. The simplicity and scalability of the membrane preparation process and the well-elucidated underlying mechanisms illuminate the great application potential of the PK-based superwetting membranes.

9.
J Hazard Mater ; 337: 217-225, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28525882

RESUMEN

The dye wastewater is one of the most difficult industrial wastewaters to treat. It keeps a big challenge to realize fast removal of dyes from water by membrane filtration due to the trade-off between separation selectivity and permeation flux for ultrafiltration or nanofiltration (NF) process. Here we report novel composite porous membranes which can remove anionic dyes from water by ultrafast permeating adsorption. A crosslinked polyethyleneimine (PEI) polymer with strong adsorption ability was incorporated onto a nylon microfiltration membrane by the interfacial amidation reaction between PEI and trimesoyl chloride. The obtained composite membranes were used for the decolorization of dye solution by permeation mode. It was shown that the composite membranes were able to nearly completely remove anionic dyes in acidic conditions with high permeation fluxes. In an optimized case, the adsorption capacity of Sunset Yellow for the composite membranes reached 0.7mg/cm2 with a high flux of 85L/m2h under a ultralow pressure of 0.01bar. This flux was far much higher than that of NF membranes, about 10L/m2hbar. The pH-dependent electrostatic interaction between PEI and anionic dyes was responsible for the rapid dye removal. The adsorption saturated membranes could be effectively regenerated by a simple alkaline washing.

10.
J Ginseng Res ; 40(1): 28-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26843819

RESUMEN

BACKGROUND: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. METHODS: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIOLOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. RESULTS: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003 was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. CONCLUSION: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

11.
Langmuir ; 31(29): 7970-9, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26139593

RESUMEN

Brønsted acidic ionic liquids (BAILs) are unique ionic liquids that display chemical structures similar to zwitterions, and they were typically used as solvents and catalysts. In this work, an imidazole-based BAIL monolayer was fabricated onto poly(ether sulfone) (PES) membranes via surface clicking reactions, and the multifunctionality, including ion exchange and biofouling resistance to proteins and bacteria, was demonstrated, which was believed to be one of few works in which BAIL had been considered to be a novel fouling resistance layer for porous membranes. The successful immobilization of the BAILs onto a membrane surface was confirmed by X-ray photoelectron spectroscopy analysis, contact angle measurement, and ζ potential determination. The results from Raman spectroscopy showed that, as a decisive step prior to zwitterion, the BAIL was deprotonated in aqueous solution, and biofouling resistance to proteins and bacteria was found. However, BAIL displayed ion exchange ability at lower pH, and surface hydrophilicity/hydrophobicity of membranes could be tuned on purpose. Our results have demonstrated that the BAIL grafted onto membranes will not only act as an antibiofouling barrier like zwitterions but also provide a platform for surface chemical tailoring by ion exchange, the property of which will become especially important in acidic solutions where the fouling resistance performances of zwitterions are greatly weakened.


Asunto(s)
Líquidos Iónicos/química , Polímeros/química , Propiedades de Superficie , Membranas Artificiales , Espectroscopía de Fotoelectrones , Espectrometría Raman
12.
J Colloid Interface Sci ; 448: 380-8, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25752579

RESUMEN

Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc.

13.
Mol Biol Evol ; 27(7): 1598-611, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20147438

RESUMEN

Floral MADS-box genes encode transcription factors that play critical roles in the development and evolution of the flower. Proteins of floral MADS-box genes regulate the expression of their downstream genes by forming various homodimers/heterodimers and quaternary complexes. Interactions among proteins of floral MADS-box genes have been documented in several model species, yet the information accumulated so far is still not sufficient to draw a general picture of the evolution of the interactions. We have characterized 28 putative floral MADS-box genes from three representative basal eudicots (i.e., Euptelea pleiospermum, Akebia trifoliata, and Pachysandra terminalis) and investigated the protein-protein interactions (PPIs) among the proteins encoded by these genes using yeast two-hybrid assays. We found that, although the PPIs in basal eudicots are largely consistent with those in core eudicots and monocots, there are lineage-specific features that have not been observed elsewhere. We also reconstructed the evolutionary histories of the PPIs among members of seven MADS-box gene lineages (i.e., AP1, AP3, PI, AG, STK, AGL2, and AGL9) in angiosperms. We revealed that the PPIs were extremely conserved in nine (or 32.1%) of the 28 possible combinations, whereas considerable variations existed in seven (25.0%) of them; in the remaining 12 (or 42.9%) combinations, however, no interaction was observed. Notably, most of the PPIs required for the formation of quaternary complexes, as suggested by the "quartet model," were highly conserved. This suggested that the evolutionarily conservative PPIs may have played critical roles in the establishment of the basic structure (or architecture) of the flower and experienced coevolution to maintain their functions. The evolutionarily variable PPIs, however, seem to have played subsidiary roles in flower development and have contributed to the variation in floral traits.


Asunto(s)
Evolución Molecular , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio MADS/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/crecimiento & desarrollo , Filogenia , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
14.
Mol Phylogenet Evol ; 44(1): 26-41, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17434760

RESUMEN

Members of the AP1/SQUA subfamily of plant MADS-box genes play broad roles in the regulation of reproductive meristems, the specification of sepal and petal identities, and the development of leaves and fruits. It has been shown that AP1/SQUA-like genes are angiosperm-specific, and have experienced several major duplication events. However, the evolutionary history of this subfamily is still uncertain. Here, we report the isolation of 14 new AP1/SQUA-like genes from seven early-diverging eudicots and the identification of 11 previously uncharacterized ESTs and genomic sequences from public databases. Sequence comparisons of these and other published sequences reveal a conserved C-terminal region, the FUL motif, in addition to the known euAP1/paleoAP1 motif, in AP1/SQUA-like proteins. Phylogenetic analyses further suggest that there are three major lineages (euAP1, euFUL, and AGL79) in core eudicots, likely resulting from two close duplication events that predated the divergence of core eudicots. Among the three lineages, euFUL is structurally very similar to FUL-like genes from early-diverging eudicots and basal angiosperms, whereas euAP1 might have originally been generated through a 1-bp deletion in the exon 8 of an ancestral euFUL- or FUL-like gene. Because euFUL- and FUL-like genes usually have broad expression patterns, we speculate that AP1/SQUA-like genes initially had broad functions. Based on these observations, the evolutionary fates of duplicate genes and the contributions of the frameshift mutation and alternative splicing to functional diversity are discussed.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Proteínas de Dominio MADS/genética , Filogenia , Proteínas de Plantas/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Mutación del Sistema de Lectura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/fisiología , Datos de Secuencia Molecular , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...