Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
2.
Signal Transduct Target Ther ; 8(1): 255, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394473

RESUMEN

Thoracic aortic aneurysms (TAAs) develop asymptomatically and are characterized by dilatation of the aorta. This is considered a life-threating vascular disease due to the risk of aortic rupture and without effective treatments. The current understanding of the pathogenesis of TAA is still limited, especially for sporadic TAAs without known genetic mutation. Sirtuin 6 (SIRT6) expression was significantly decreased in the tunica media of sporadic human TAA tissues. Genetic knockout of Sirt6 in mouse vascular smooth muscle cells accelerated TAA formation and rupture, reduced survival, and increased vascular inflammation and senescence after angiotensin II infusion. Transcriptome analysis identified interleukin (IL)-1ß as a pivotal target of SIRT6, and increased IL-1ß levels correlated with vascular inflammation and senescence in human and mouse TAA samples. Chromatin immunoprecipitation revealed that SIRT6 bound to the Il1b promoter to repress expression partly by reducing the H3K9 and H3K56 acetylation. Genetic knockout of Il1b or pharmacological inhibition of IL-1ß signaling with the receptor antagonist anakinra rescued Sirt6 deficiency mediated aggravation of vascular inflammation, senescence, TAA formation and survival in mice. The findings reveal that SIRT6 protects against TAA by epigenetically inhibiting vascular inflammation and senescence, providing insight into potential epigenetic strategies for TAA treatment.


Asunto(s)
Aneurisma de la Aorta Torácica , Sirtuinas , Humanos , Ratones , Animales , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/patología , Inflamación/genética , Angiotensina II/genética , Angiotensina II/farmacología , Epigénesis Genética/genética , Sirtuinas/genética
3.
EBioMedicine ; 90: 104518, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36933413

RESUMEN

BACKGROUND: Neurological damage caused by coronavirus disease 2019 (COVID-19) has attracted increasing attention. Recently, through autopsies of patients with COVID-19, the direct identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in their central nervous system (CNS) has been reported, indicating that SARS-CoV-2 might directly attack the CNS. The need to prevent COVID-19-induced severe injuries and potential sequelae is urgent, requiring the elucidation of large-scale molecular mechanisms in vivo. METHODS: In this study, we performed liquid chromatography-mass spectrometry-based proteomic and phosphoproteomic analyses of the cortex, hippocampus, thalamus, lungs, and kidneys of SARS-CoV-2-infected K18-hACE2 female mice. We then performed comprehensive bioinformatic analyses, including differential analyses, functional enrichment, and kinase prediction, to identify key molecules involved in COVID-19. FINDINGS: We found that the cortex had higher viral loads than did the lungs, and the kidneys did not have SARS-COV-2. After SARS-CoV-2 infection, RIG-I-associated virus recognition, antigen processing and presentation, and complement and coagulation cascades were activated to different degrees in all five organs, especially the lungs. The infected cortex exhibited disorders of multiple organelles and biological processes, including dysregulated spliceosome, ribosome, peroxisome, proteasome, endosome, and mitochondrial oxidative respiratory chain. The hippocampus and thalamus had fewer disorders than did the cortex; however, hyperphosphorylation of Mapt/Tau, which may contribute to neurodegenerative diseases, such as Alzheimer's disease, was found in all three brain regions. Moreover, SARS-CoV-2-induced elevation of human angiotensin-converting enzyme 2 (hACE2) was observed in the lungs and kidneys, but not in the three brain regions. Although the virus was not detected, the kidneys expressed high levels of hACE2 and exhibited obvious functional dysregulation after infection. This indicates that SARS-CoV-2 can cause tissue infections or damage via complicated routes. Thus, the treatment of COVID-19 requires a multipronged approach. INTERPRETATION: This study provides observations and in vivo datasets for COVID-19-associated proteomic and phosphoproteomic alterations in multiple organs, especially cerebral tissues, of K18-hACE2 mice. In mature drug databases, the differentially expressed proteins and predicted kinases in this study can be used as baits to identify candidate therapeutic drugs for COVID-19. This study can serve as a solid resource for the scientific community. The data in this manuscript will serve as a starting point for future research on COVID-19-associated encephalopathy. FUNDING: This study was supported by grants from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the National Natural Science Foundation of China, and the Natural Science Foundation of Beijing.


Asunto(s)
COVID-19 , Ratones , Humanos , Femenino , Animales , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Proteómica , Ratones Transgénicos , Pulmón , Hipocampo , Riñón , Tálamo , Modelos Animales de Enfermedad
4.
Brain Pathol ; 33(4): e13157, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36974636

RESUMEN

Mitochondrial encephalomyopathies (ME) are frequently associated with mutations of mitochondrial DNA, but the pathogenesis of a subset of ME (sME) remains elusive. Here we report that haploinsufficiency of a mitochondrial inner membrane protein, Mic60, causes progressive neurological abnormalities with insulted mitochondrial structure and neuronal loss in mice. In addition, haploinsufficiency of Mic60 reduces mitochondrial membrane potential and cellular ATP production, increases reactive oxygen species, and alters mitochondrial oxidative phosphorylation complexes in neurons in an age-dependent manner. Moreover, haploinsufficiency of Mic60 compromises brain glucose intake and oxygen consumption in mice, resembling human ME syndrome. We further discover that MIC60 protein expression declined significantly in human sME, implying that insufficient MIC60 may contribute for pathogenesis of human ME. Notably, systemic administration of antioxidant N-acetylcysteine largely reverses mitochondrial dysfunctions and metabolic disorders in haplo-insufficient Mic60 mice, also restores neurological abnormal symptom. These results reveal Mic60 is required in the maintenance of mitochondrial integrity and function, and likely a potential therapeutics target for mitochondrial encephalomyopathies.


Asunto(s)
Encefalomiopatías Mitocondriales , Animales , Ratones , Humanos , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial , Antioxidantes
5.
Circ Res ; 131(5): 442-455, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35899614

RESUMEN

BACKGROUND: Timely and complete restoration of blood flow is the most effective intervention for patients with acute myocardial infarction. However, the efficacy is limited by myocardial ischemia-reperfusion (MI/R) injury. PDE4 (phosphodiesterase-4) hydrolyzes intracellular cyclic adenosine monophosphate and it has 4 subtypes A-D. This study aimed to delineate the role of PDE4B (phosphodiesterase-4 subtype B) in MI/R injury. METHODS: Mice were subjected to 30-minute coronary artery ligation, followed by 24-hour reperfusion. Cardiac perfusion was assessed by laser Doppler flow. Vasomotor reactivities were determined in mouse and human coronary (micro-)arteries. RESULTS: Cardiac expression of PDE4B, but not other PDE4 subtypes, was increased in mice following reperfusion. PDE4B was detected primarily in endothelial and myeloid cells of mouse and human hearts. PDE4B deletion strikingly reduced infarct size and improved cardiac function 24-hour or 28-day after MI/R. PDE4B in bone marrow-derived cells promoted MI/R injury and vascular PDE4B further exaggerated this injury. Mechanistically, PDE4B mediated neutrophil-endothelial cell interaction and PKA (protein kinase A)-dependent expression of cell adhesion molecules, neutrophil cardiac infiltration, and release of proinflammatory cytokines. Meanwhile, PDE4B promoted coronary microcirculatory obstruction and vascular permeability in MI/R, without affecting flow restriction-induced thrombosis. PDE4B blockade increased flow-mediated vasodilatation and promoted endothelium-dependent dilatation of coronary arteries in a PKA- and nitric oxide-dependent manner. Furthermore, postischemia administration with piclamilast, a PDE4 pan-inhibitor, improved cardiac microcirculation, suppressed inflammation, and attenuated MI/R injury in mice. Incubation with sera from patients with acute myocardial infarction impaired acetylcholine-induced relaxations in human coronary microarteries, which was abolished by PDE4 inhibition. Similar protection against MI/R-related coronary injury was recapitulated in mice with PDE4B deletion or inhibition, but not with the pure vasodilator, sodium nitroprusside. CONCLUSIONS: PDE4B is critically involved in neutrophil inflammation and microvascular obstruction, leading to MI/R injury. Selective inhibition of PDE4B might protect cardiac function in patients with acute myocardial infarction designated for reperfusion therapy.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Humanos , Inflamación/metabolismo , Microcirculación , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Neutrófilos/metabolismo
6.
Chin Med Sci J ; 37(2): 87-90, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35796332

RESUMEN

The mode of scientific thinking is undergoing rapid and profound changes. In the 21st century, macro and micro civilizations go parallel. A systematic and scientific methodology is required for the study of complex things. The thinking mode in modern medicine is gradually shifting from analytical, reductive thinking to holistic and systematic thinking. As such Western medicine and traditional Chinese medicine are gradually approaching the epistemology of health and disease state. The importance of scientific thinking in innovation has been expounded in this study. The development trends in medicine in the current era are analyzed, the importance of systems theory in the study of human bodies is discussed, and a new medical model named Novel Systems Medicine is proposed.


Asunto(s)
Medicina Tradicional China , Humanos , Medicina Tradicional China/métodos
7.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35419596

RESUMEN

Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.


Asunto(s)
Neoplasias de la Próstata , Microambiente Tumoral , Senescencia Celular/genética , Genómica , Humanos , Inmunoterapia , Masculino , Neoplasias de la Próstata/genética , Microambiente Tumoral/genética
8.
Redox Biol ; 50: 102239, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092867

RESUMEN

In ß-thalassemia, free α-globin chains are unstable and tend to aggregate or degrade, releasing toxic heme, porphyrins and iron, which produce reactive oxygen species (ROS). α-Hemoglobin-stabilizing protein (AHSP) is a potential modifier of ß-thalassemia due to its ability to escort free α-globin and inhibit the cellular production of ROS. The influence of AHSP on the redox equilibrium raises the question of whether AHSP expression is regulated by components of ROS signaling pathways and/or canonical redox proteins. Here, we report that AHSP expression in K562 cells could be stimulated by NFE2-related factor 2 (Nrf2) and its agonist tert-butylhydroquinone (tBHQ). This tBHQ-induced increase in AHSP expression was also observed in Ter119+ mouse erythroblasts at each individual stage during terminal erythroid differentiation. We further report that the AHSP level was elevated in α-globin-overexpressing K562 cells and staged erythroblasts from ßIVS-2-654 thalassemic mice. tBHQ treatment partially alleviated, whereas Nrf2 or AHSP knockdown exacerbated, α-globin precipitation and ROS production in fetal liver-derived thalassemic erythroid cells. MafG and Nrf2 occupancy at the MARE-1 site downstream of the AHSP transcription start site was detected in K562 cells. Finally, we show that MafG facilitated the activation of the AHSP gene in K562 cells by Nrf2. Our results demonstrate Nrf2-mediated feedback regulation of AHSP in response to excess α-globin, as occurs in ß-thalassemia.


Asunto(s)
Chaperonas Moleculares , Factor 2 Relacionado con NF-E2 , Talasemia beta , Animales , Proteínas Sanguíneas/metabolismo , Proteínas Portadoras/metabolismo , Ratones , Chaperonas Moleculares/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Talasemia beta/genética , Talasemia beta/metabolismo
10.
J Mol Cell Cardiol ; 162: 43-52, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437878

RESUMEN

Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Anciano , Envejecimiento , Enfermedades Cardiovasculares/etiología , Senescencia Celular , Humanos , Miocitos del Músculo Liso
11.
Nucleic Acids Res ; 49(17): 9711-9723, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379783

RESUMEN

Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and ß-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult ß-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hemoglobina Fetal/genética , Silenciador del Gen , Proteínas de Unión al ARN/metabolismo , gamma-Globinas/genética , Animales , Células Cultivadas , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/biosíntesis , Humanos , Células K562 , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas , Factores de Transcripción SOXD/metabolismo , gamma-Globinas/biosíntesis
14.
Chin Med Sci J ; 35(1): 43-53, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32299537

RESUMEN

Objective Angiotensin Ⅱ (Ang Ⅱ)-induced vascular damage is a major risk of hypertension. However, the underlying molecular mechanism of AngⅡ-induced vascular damage is still unclear. In this study, we explored the novel mechanism associated with Ang II-induced hypertension. Methods We treated 8- to 12-week-old C57BL/6J male mice with saline and Ang Ⅱ(0.72 mg/kg·d) for 28 days, respectively. Then the RNA of the media from the collected mice aortas was extracted for transcriptome sequencing. Principal component analysis was applied to show a clear separation of different samples and the distribution of differentially expressed genes was manifested by Volcano plot. Functional annotations including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to reveal the molecular mechanism of Ang Ⅱ-induced hypertension. Finally, the differentially expressed genes were validated by using quantitative real-time PCR. Results The result revealed that a total of 773 genes, including 599 up-regulated genes and 174 down-regulated genes, were differentially expressed in the aorta of Ang Ⅱ-induced hypertension mice model. Functional analysis of differentially expressed genes manifested that various cellular processes may be involved in the Ang Ⅱ-induced hypertension, including some pathways associated with hypertension such as extracellular matrix, inflammation and immune response. Interestingly, we also found that the differentially expressed genes were enriched in vascular aging pathway, and further validated that the expression levels of insulin-like growth factor 1 and adiponectin were significantly increased (P<0.05). Conclusion We identify that vascular aging is involved in Ang Ⅱ-induced hypertension, and insulin-like growth factor 1 and adiponectin may be important candidate genes leading to vascular aging.


Asunto(s)
Envejecimiento , Aorta/metabolismo , Perfilación de la Expresión Génica/métodos , Hipertensión/genética , Angiotensina II , Animales , Aorta/fisiopatología , Presión Sanguínea/genética , Ontología de Genes , Hipertensión/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Autoimmun ; 107: 102360, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806420

RESUMEN

OBJECTIVE: Gut dysbiosis has been reported implicated in ankylosing spondylitis (AS), a common chronic inflammatory disease mainly affects sacroiliac joints and spine. Utilizing deep sequencing on the feces of untreated AS patients, our study aimed at providing an in-depth understanding of AS gut microbiota. METHODS: We analyzed the fecal metagenome of 85 untreated AS patients and 62 healthy controls by metagenomic shotgun sequencing, and 23 post-treatment feces of those AS patients were collected for comparison. Comparative analyses among different cohorts including AS, rheumatoid arthritis and Behcet's disease were performed to uncover some common signatures related to inflammatory arthritis. Molecular mimicry of a microbial peptide was also demonstrated by ELISpot assay. RESULTS: We identified AS-enriched species including Bacteroides coprophilus, Parabacteroides distasonis, Eubacterium siraeum, Acidaminococcus fermentans and Prevotella copri. Pathway analysis revealed increased oxidative phosphorylation, lipopolysaccharide biosynthesis and glycosaminoglycan degradation in AS gut microbiota. Microbial signatures of AS gut selected by random forest model showed high distinguishing accuracy. Some common signatures related to autoimmunity, such as Bacteroides fragilis and type III secretion system (T3SS), were also found. Finally, in vitro experiments demonstrated an increased amount of IFN-γ producing cells triggered by a bacterial peptide of AS-enriched species, mimicking type II collagen. CONCLUSIONS: These findings collectively indicate that gut microbiota was perturbed in untreated AS patients with diagnostic potential, and some AS-enriched species might be triggers of autoimmunity by molecular mimicry. Additionally, different inflammatory arthritis shared some common microbial signatures.


Asunto(s)
Microbioma Gastrointestinal , Mediadores de Inflamación/metabolismo , Metagenoma , Metagenómica , Espondilitis Anquilosante/etiología , Espondilitis Anquilosante/metabolismo , Autoinmunidad , Estudios de Casos y Controles , Susceptibilidad a Enfermedades , Disbiosis , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Humanos , Metagenómica/métodos , Espondilitis Anquilosante/patología
16.
Nat Cell Biol ; 21(12): 1553-1564, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768048

RESUMEN

Redox balance, an essential feature of healthy physiological steady states, is regulated by circadian clocks, but whether or how endogenous redox signalling conversely regulates clockworks in mammals remains unknown. Here, we report circadian rhythms in the levels of endogenous H2O2 in mammalian cells and mouse livers. Using an unbiased method to screen for H2O2-sensitive transcription factors, we discovered that rhythmic redox control of CLOCK directly by endogenous H2O2 oscillations is required for proper intracellular clock function. Importantly, perturbations in the rhythm of H2O2 levels induced by the loss of p66Shc, which oscillates rhythmically in the liver and suprachiasmatic nucleus (SCN) of mice, disturb the rhythmic redox control of CLOCK function, reprogram hepatic transcriptome oscillations, lengthen the circadian period in mice and modulate light-induced clock resetting. Our findings suggest that redox signalling rhythms are intrinsically coupled to the circadian system through reversible oxidative modification of CLOCK and constitute essential mechanistic timekeeping components in mammals.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Peróxido de Hidrógeno/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Femenino , Hígado/metabolismo , Hígado/fisiología , Masculino , Mamíferos/metabolismo , Mamíferos/fisiología , Ratones , Ratones Noqueados , Oxidación-Reducción , Proteínas Circadianas Period/metabolismo , Transducción de Señal/fisiología , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología
17.
iScience ; 17: 155-166, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31279933

RESUMEN

Both caloric restriction (CR) and mitochondrial proteostasis are linked to longevity, but how CR maintains mitochondrial proteostasis in mammals remains elusive. MicroRNAs (miRNAs) are well known for gene silencing in cytoplasm and have recently been identified in mitochondria, but knowledge regarding their influence on mitochondrial function is limited. Here, we report that CR increases miRNAs, which are required for the CR-induced activation of mitochondrial translation, in mouse liver. The ablation of miR-122, the most abundant miRNA induced by CR, or the retardation of miRNA biogenesis via Drosha knockdown significantly reduces the CR-induced activation of mitochondrial translation. Importantly, CR-induced miRNAs cause the overproduction of mtDNA-encoded proteins, which induces the mitochondrial unfolded protein response (UPRmt), and consequently improves mitochondrial proteostasis and function. These findings establish a physiological role of miRNA-enhanced mitochondrial function during CR and reveal miRNAs as critical mediators of CR in inducing UPRmt to improve mitochondrial proteostasis.

18.
Nat Commun ; 10(1): 1888, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015404

RESUMEN

The use of nonsteroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX)-1 and COX-2, increases heart failure risk. It is unknown whether microsomal (m) prostaglandin (PG) E synthase (S)-1, a target downstream of COX, regulates myocardial (M) ischemia/reperfusion (I/R) injury, a key determinant of heart failure. Here we report that COX-1 and mPGES-1 mediate production of substantial amounts of PGE2 and confer cardiac protection in MI/R. Deletion of mPges-1 impairs cardiac microvascular perfusion and increases inflammatory cell infiltration in mouse MI/R. Consistently, mPges-1 deletion depresses the arteriolar dilatory response to I/R in vivo and to acetylcholine ex vivo, and enhances leukocyte-endothelial cell interaction, which is mediated via PGE receptor-4 (EP4). Furthermore, endothelium-restricted Ep4 deletion impairs microcirculation, and exacerbates MI/R injury, irrespective of EP4 agonism. Treatment with misoprostol, a clinically available PGE analogue, improves microcirculation and reduces MI/R injury. Thus, mPGES-1, a key microcirculation protector, constrains MI/R injury and this beneficial effect is partially mediated via endothelial EP4.


Asunto(s)
Vasos Coronarios/patología , Ciclooxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Daño por Reperfusión Miocárdica/patología , Prostaglandina-E Sintasas/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Animales , Ciclooxigenasa 1/genética , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Endotelio/patología , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación/efectos de los fármacos , Misoprostol/farmacología , Misoprostol/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/etiología , Miocardio/patología , Prostaglandina-E Sintasas/genética , Subtipo EP4 de Receptores de Prostaglandina E/genética , Transducción de Señal
19.
Stem Cell Res Ther ; 10(1): 9, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630525

RESUMEN

BACKGROUND: Mouse somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors known to regulate pluripotency, including Oct4, Sox2, Klf4, and c-Myc. It has been reported that Sirtuin 6 (Sirt6), a member of the sirtuin family of NAD+-dependent protein deacetylases, is involved in embryonic stem cell differentiation. However, whether and how Sirt6 influences epigenetic reprogramming remains unknown. METHODS: Mouse embryonic fibroblasts isolated from transgenic Oct4-GFP reporter mice with or without Sirt6 were used for reprogramming by Yamanaka factors. Alkaline phosphatase-positive and OCT4-GFP-positive colony were counted to calculate reprogramming efficiency. OP9 feeder cell co-culture system was used to measure the hematopoietic differentiation from mouse ES and iPS cells. RNA sequencing was measured to identify the differential expressed genes due to loss of Sirt6 in somatic and pluripotent cells. RESULTS: In this study, we provide evidence that Sirt6 is involved in mouse somatic reprogramming. We found that loss of function of Sirt6 could significantly decrease reprogramming efficiency. Furthermore, we showed that Sirt6-null iPS-like cell line has intrinsically a differentiation defect even though the establishment of normal self-renewal. Particularly, by performing transcriptome analysis, we observed that several pluripotent transcriptional factors increase in knockout cell line, which explains the underlying loss of pluripotency in Sirt6-null iPS-like cell line. CONCLUSIONS: Taken together, we have identified a new regulatory role of Sirt6 in reprogramming and maintenance of pluripotency.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Sirtuinas/metabolismo , Animales , Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Factor 4 Similar a Kruppel , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...