Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 791: 136917, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252850

RESUMEN

Circadian rhythm plays a significant role in maintaining the function of the cardiovascular system. Emerging studies have demonstrated that circadian disruption enhances the risk of cardiovascular diseases by activating the sympathetic nervous system; however, the underlying mechanisms remain unknown. Therefore, this study aimed to clarify the role of oxidative stress in the rostral ventrolateral medulla (RVLM) in sympathetic hyperactivity induced by circadian disruption. Rats were randomly divided into two groups: the normal light and dark (LD) group and the circadian disruption (CD) group. Sympathetic nerve activity of rats was assessed by recording renal sympathetic nerve activity (RSNA) and indirect methods such as plasma level of norepinephrine (NE). The level of oxidative stress in the RVLM was detected by dihydroethidium probes. Moreover, the expression levels of the oxidative stress-related proteins in the RVLM were detected by Western blotting. Circadian disruption significantly increased blood pressure (BP), RSNA, and plasma levels of NE. Compared to the LD group, the CD group exhibited a more significant depressor response to i.v. hexamethonium bromide, a ganglionic blocker. Furthermore, the reactive oxygen species (ROS) production in the RVLM of rats with circadian disruption was significantly increased. In addition, BP and RSNA of rats with circadian disruption exhibited a greater decrease in the effects of microinjection of tempol, a superoxide scavenger, into the RVLM, compared to artificial cerebrospinal fluid (aCSF). Further investigation of the molecular mechanism by Western blotting showed that nuclear factor-erythroid-2-related factor 2 (Nrf2)/heme oxygenase 1 (HO1)/NAD(P)H: quinone oxidoreductase 1 (NQO1) signaling was down-regulated in the RVLM of circadian disruption rats. These data suggest that oxidative stress in the RVLM mediates sympathetic hyperactivity induced by circadian disruption and possibly by down-regulating Nrf2/HO1/NQO1 signaling.


Asunto(s)
Hipertensión , Factor 2 Relacionado con NF-E2 , Ratas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Bulbo Raquídeo , Sistema Nervioso Simpático , Estrés Oxidativo/fisiología , Superóxidos/metabolismo , Superóxidos/farmacología , Presión Sanguínea , Hipertensión/metabolismo , Frecuencia Cardíaca
2.
Molecules ; 27(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014422

RESUMEN

Aromatic imide derivatives play a critical role in boosting the electroluminescent (EL) performance of organic light-emitting diodes (OLEDs). However, the majority of aromatic imide-based materials are limited to long wavelength emission OLEDs rather than blue emissions due to their strong electron-withdrawing characteristics. Herein, two novel polycyclic fused amide units were reported as electron acceptor to be combined with either a tetramethylcarbazole or acridine donor via a phenyl linker to generate four conventional fluorescence blue emitters of BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC for the first time. BSQ-4MeCz and BSQ-DMAC based on a BSQ unit exhibited higher thermal stability and photoluminescence quantum yields than BBI-4MeCz and BBI-DMAC based on a BBI unit due to their more planar acceptor structure. The intermolecular interactions that exist in the BSQ series materials effectively inhibit the molecular rotation and configuration relaxation, and thus allow for blue-shifted emissions. Blue OLED devices were constructed with the developed materials as emitters, and the effects of both the structure of the polycyclic fused amide acceptor and the electron donor on the EL performance were clarified. Consequently, a sky-blue OLED device based on BSQ-DMAC was created, with a high maximum external quantum efficiency of 4.94% and a maximum luminance of 7761 cd m-2.

3.
Proc Natl Acad Sci U S A ; 110(35): 14492-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940322

RESUMEN

The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang-You-Pei-Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93-11 and maternal cultivar PA64s of Liang-You-Pei-Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.


Asunto(s)
Genoma de Planta , Hibridación Genética , Oryza/genética , Recombinación Genética , Ligamiento Genético , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...