Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Front Microbiol ; 15: 1378073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770021

RESUMEN

This study investigates the effects of varying energy levels in diets on Black Angus steers, focusing on growth performance, muscle composition, rumen microbial community, and their interrelationships. Twenty-seven Black Angus steers, aged approximately 22 months and weighing 520 ± 40 kilograms, were randomly divided into three groups: low-energy (LE), medium-energy (ME), and high-energy (HE). Each group consisted of nine individuals. The steers were fed diets with energy levels of 6.657 MJ/kg (LE), 7.323 MJ/kg (ME), and 7.990 MJ/kg (HE) following a 14-day pre-feeding period, with a subsequent 90-day main experimental phase. After the 90-day feeding period, both the HE and ME groups exhibited significantly higher average daily weight gain (ADG) compared to the LE group (p < 0.05). The feed-to-weight ratios were lower in the HE and ME groups compared to the LE group (p < 0.05). The HE group showed significantly higher crude fat content in the longissimus dorsi muscle compared to the LE group (p < 0.05), with total fatty acid content in the muscle surpassing that in the ME and LE groups (p < 0.05). As dietary energy levels increased, the diversity of the rumen microbial community decreased (p < 0.05), and significant differences in bacterial community structure were observed between the LE and HE groups (p < 0.05). The results suggest that higher dietary energy levels enhance growth performance and alter muscle composition in Black Angus steers, while also influencing the rumen microbial community. This study contributes to understanding optimal dietary strategies for finishing Angus cattle to improve beef quality, economic returns, and the development of standardized production procedures.

2.
AMB Express ; 14(1): 58, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761313

RESUMEN

This experiment aimed to investigate the impact of malic acid (MA) and citric acid (CA) on the nutritional composition, fermentation quality, rumen degradation rate, and microbial diversity of a mixture of apple pomace and corn protein powder during ensiling. The experiment used apple pomace and corn protein powder as raw materials, with four groups: control group (CON), malic acid treatment group (MA, 10 g/kg), citric acid treatment group (CA, 10 g/kg), and citric acid + malic acid treatment group (MA, 10 g/kg + CA, 10 g/kg). Each group has 3 replicates, with 2 repetitions in parallel, subjected to mixed ensiling for 60 days. The results indicated: (1) Compared to the CON group, the crude protein content significantly increased in the MA, CA, and MA + CA groups (p < 0.05), with the highest content observed in the MA + CA group. The addition of MA and CA effectively reduced the water-soluble carbohydrate (WSC) content (p < 0.05). Simultaneously, the CA group showed a decreasing trend in NDFom and hemicellulose content (p = 0.08; p = 0.09). (2) Compared to the CON group, the pH significantly decreased in the MA, CA, and MA + CA groups (p < 0.01), and the three treatment groups exhibited a significant increase in lactic acid and acetic acid content (p < 0.01). The quantity of lactic acid bacteria increased significantly (p < 0.01), with the MA + CA group showing a more significant increase than the MA and CA groups (p < 0.05). (3) Compared to the CON group, the in situ dry matter disappearance (ISDMD) significantly increased in the MA, CA, and MA + CA groups (p < 0.05). All three treatment groups showed highly significant differences in in situ crude protein disappearance (ISCPD) compared to the CON group (p < 0.01). (4) Good's Coverage for all experimental groups was greater than 0.99, meeting the conditions for subsequent sequencing. Compared to the CON group, the Shannon index significantly increased in the CA group (p < 0.01), and the Simpson index increased significantly in the MA group (p < 0.05). However, there was no significant difference in the Chao index among the three treatment groups and the CON group (p > 0.05). At the genus level, the abundance of Lentilactobacillus in the MA, CA, and MA + CA groups was significantly higher than in the control group (p < 0.05). PICRUSt prediction results indicated that the metabolic functional microbial groups in the CA and MA treatment groups were significantly higher than in the CON group (p < 0.05), suggesting that the addition of MA or CA could reduce the loss of nutritional components such as protein and carbohydrates in mixed ensilage. In conclusion, the addition of malic acid and citric acid to a mixture of apple pomace and corn protein powder during ensiling reduces nutritional losses, improves fermentation quality and rumen degradation rate, enhances the diversity of the microbial community in ensiled feed, and improves microbial structure. The combined addition of malic acid and citric acid demonstrates a superior effect.

3.
Sci Rep ; 14(1): 9858, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684760

RESUMEN

The progression of muscle development is a pivotal aspect of animal ontogenesis, where miRNA and mRNA exert substantial influence as prominent players. It is important to understand the molecular mechanisms involved in skeletal muscle development to enhance the quality and yield of meat produced by Leizhou goats. We employed RNA sequencing (RNA-SEQ) technology to generate miRNA-mRNA profiles in Leizhou goats, capturing their developmental progression at 0, 3, and 6 months of age. A total of 977 mRNAs and 174 miRNAs were found to be differentially expressed based on our analysis. Metabolic pathways, calcium signaling pathways, and amino acid synthesis and metabolism were found to be significantly enriched among the differentially expressed mRNA in the enrichment analysis. Meanwhile, we found that among these differentially expressed mRNA, some may be related to muscle development, such as MYL10, RYR3, and CSRP3. Additionally,, we identified five muscle-specific miRNAs (miR-127-3p, miR-133a-3p, miR-193b-3p, miR-365-3p, and miR-381) that consistently exhibited high expression levels across all three stages. These miRNAs work with their target genes (FHL3, SESN1, PACSIN3, LMCD1) to regulate muscle development. Taken together, our findings suggest that several miRNAs and mRNAs are involved in regulating muscle development and cell growth in goats. By uncovering the molecular mechanisms involved in muscle growth and development, these findings contribute valuable knowledge that can inform breeding strategies aimed at enhancing meat yield and quality in Leizhou goats.


Asunto(s)
Perfilación de la Expresión Génica , Cabras , MicroARNs , Músculo Esquelético , ARN Mensajero , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Desarrollo de Músculos/genética , Regulación del Desarrollo de la Expresión Génica , Transcriptoma
4.
J Proteomics ; 298: 105155, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38460743

RESUMEN

Lysine succinylation (Ksucc) is a recently identified posttranslational modification that is involved in many diseases. This study examined the role of Ksucc in the pathogenesis of hypertrophic scar (HS). The presence of Ksucc in human skin was measured by immunoblotting. Ksucc occurs in many skin proteins ranging from 25 to 250 kDa, and higher levels of Ksucc are found in HS skin than in normal skin. An immunoaffinity approach coupled with LC-MS/MS was used to characterize the first succinylome of human skin, and 159 Ksucc sites in 79 proteins were identified. Among these, there were 38 increased succinylated sites in 29 proteins but no decreased succinylated sites in HS compared with normal skin. A parallel reaction monitoring assay was performed to validate the results of the succinylome and showed that the levels of Ksucc in decorin and collagens, which are involved in the pathogenesis of HS, were increased in HS than in normal skin. In addition, increasing the level of Ksucc enhanced cell proliferation and upregulated the expression of fibrosis markers (α-SMA, COL1, and COL3) in human skin fibroblasts. Our results provide global insights into the functional role of Ksucc in hypertrophic scarring.


Asunto(s)
Cicatriz Hipertrófica , Humanos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Lisina/metabolismo , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Procesamiento Proteico-Postraduccional
5.
Heliyon ; 10(6): e28086, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533007

RESUMEN

Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.

6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473968

RESUMEN

The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.


Asunto(s)
MicroARNs , Receptores de Ghrelina , Femenino , Humanos , Antígeno Nuclear de Célula en Proliferación , MicroARNs/genética , Apoptosis/genética , Proliferación Celular/genética , Luciferasas , Línea Celular Tumoral
7.
Burns Trauma ; 12: tkad058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250706

RESUMEN

Background: Refractory diabetic wounds are a common occurrence in patients with diabetes and epidermis-specific macroautophagy/autophagy impairment has been implicated in their pathogenesis. Therefore, identifying and developing treatment strategies capable of normalizing epidermis-specific macroautophagy/autophagy could facilitate diabetic wound healing. The study aims to investigate the potential of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) from hypoxic conditions as a treatment to normalize epidermis-specific autophagy for diabetic wound healing. Methods: We compared the effects of bone marrow mesenchymal stem cell (BMSC)-sourced exosomes (BMSC-Exos) from hypoxic conditions to those of BMSC in normoxic conditions (noBMSC-Exos). Our studies involved morphometric assessment of the exosomes, identification of the microRNA (miRNA) responsible for the effects, evaluation of keratinocyte functions and examination of effects of the exosomes on several molecules involved in the autophagy pathway such as microtubule-associated protein 1 light chain 3 beta, beclin 1, sequestosome 1, autophagy-related 5 and autophagy-related 5. The experiments used human BMSCs from the American Type Culture Collection, an in vivo mouse model of diabetes (db/db) to assess wound healing, as well as the human keratinocyte HaCaT cell line. In the methodology, the authors utilized an array of approaches that included electron microscopy, small interfering RNA (siRNA) studies, RNA in situ hybridization, quantitative real-time reverse transcription PCR (qRT-PCR), the isolation, sequencing and differential expression of miRNAs, as well as the use of miR-4645-5p-specific knockdown with an inhibitor. Results: Hypoxia affected the release of exosomes from hypoxic BMSCs (hy-BMSCs) and influenced the size and morphology of the exosomes. Moreover, hyBMSC-Exo treatment markedly improved keratinocyte function, including keratinocyte autophagy, proliferation and migration. miRNA microarray and bioinformatics analysis showed that the target genes of the differentially expressed miRNAs were mainly enriched in 'autophagy' and 'process utilizing autophagic mechanism' in the 'biological process' category and miR-4645-5p as a major contributor to the pro-autophagy effect of hyBMSC-Exos. Moreover, mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) was identified as a potential target of exosomal miR-4645-5p; this was confirmed using a dual luciferase assay. Exosomal miR-4645-5p mediates the inactivation of the MAPKAPK2-induced AKT kinase group (comprising AKT1, AKT2, and AKT3), which in turn suppresses AKT-mTORC1 signaling, thereby facilitating miR-4645-5p-mediated autophagy. Conclusions: Overall, the results of this study showed that hyBMSC-Exo-mediated transfer of miR-4645-5p inactivated MAPKAPK2-induced AKT-mTORC1 signaling in keratinocytes, which activated keratinocyte autophagy, proliferation and migration, resulting in diabetic wound healing in mice. Collectively, the findings could aid in the development of a novel therapeutic strategy for diabetic wounds.

8.
Small ; : e2309276, 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38247194

RESUMEN

Macrophage dysfunction is one of the primary factors leading to the delayed healing of diabetic wounds. Hypoxic bone marrow mesenchymal stem cells-derived exosomes (hyBMSC-Exos) have been shown to play an active role in regulating cellular function through the carried microRNAs. However, the administration of hyBMSC-Exos alone in diabetic wounds usually brings little effect, because the exosomes are inherently unstable and have a short retention time at the wounds. In this study, a multifunctional hydrogel based on gallic acid (GA) conjugated chitosan (Chi-GA) and partially oxidized hyaluronic acid (OHA) is prepared for sustained release of hyBMSC-Exos. The hydrogel not only exhibits needs-satisfying physicochemical properties, but also displays outstanding biological performances such as low hemolysis rate, strong antibacterial capacity, great antioxidant ability, and excellent biocompatibility. It has the ability to boost the stability of hyBMSC-Exos, leading to a continuous and gradual release of the exosomes at wound locations, ultimately enhancing the exosomes' uptake efficiency by target cells. Most importantly, hyBMSC-Exos loaded hydrogel shows an excellent ability to promote diabetic wound healing by regulating macrophage polarization toward M2 phenotype. This may be because exosomal miR-4645-5p and antioxidant property of the hydrogel synergistically inhibit SREBP2 activity in macrophages. This study presents a productive approach for managing diabetic wounds.

9.
Burns ; 50(2): 413-423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37865601

RESUMEN

BACKGROUND: Patients with extensive burns are critically ill and have long treatment periods. Length of stay (LOS) is a good measure for assessing treatment. This study sought to identify predictors of prolonged LOS in patients with extensive burns (≥50% TBSA). METHODS: This retrospective multicenter cohort study included adults aged ≥ 18 years who survived extensive burns in three burn centers in Eastern China between January 2016 and June 2022. Epidemiological, demographic and clinical outcomes data were extracted from electronic medical records and compared between patients with/without prolonged LOS, which was defined as LOS greater than the median. Logistic regression analysis was used to identify predictors of prolonged LOS. RESULTS: The study sample included 321 patients, of whom 156 (48.6%) had an LOS of 58 days (IQR 41.0-77.0). Univariate regression analysis showed that increased total burn area and increased full-thickness burn area; electrical, chemical and other burns; increased erythrocytes, leukocytes, platelets or serum creatinine within 24 h of admission; concomitant inhalation injury, pulmonary edema, sepsis, bloodstream infection, wound infection, pulmonary infection, urinary tract infection, or HB < 70 g/L during hospitalization were associated with prolonged LOS in patients with extensive burns. Increased number of surgical operations, mechanical ventilation and renal replacement therapy were also associated with prolonged LOS (P < 0.05 or P < 0.001). Multivariate regression analysis revealed that increased total burn area (ratio 1.032, 95%CI 1.01-1.055; P = 0.004), electrical and chemical or other burns (3.282, 1.335-8.073; P = 0.01), development of wound infection (2.653 1.285-5.481; P = 0.008) and increased number of operative procedures (1.714, 1.388-2.116, P < 0.001) were significant predictors. CONCLUSIONS: Increased area of full-thickness burn,occurrence of electrical and chemical or other burns,occurrence of wound infection and increased number of surgeries are the best predictors of prolonged LOS in patients with extensive burns. Clarifying relevant predictors of burn patients' LOS provides a reliable reference for clinical treatment.


Asunto(s)
Quemaduras , Sepsis , Infección de Heridas , Adulto , Humanos , Tiempo de Internación , Estudios Retrospectivos , Estudios de Cohortes , Quemaduras/epidemiología , Quemaduras/terapia
10.
Front Genet ; 14: 1303031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152654

RESUMEN

The pituitary gland serves as the central endocrine regulator of growth, reproduction, and metabolism and plays a crucial role in the reproductive process of female animals. Transcriptome analysis was conducted using pituitary gland samples from Leizhou goats with varying levels of fecundity to investigate the effects of long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA regulation on pituitary hormone secretion and its association with goat fecundity. The analysis aimed to identify lncRNAs, circRNAs, and mRNAs that influence the fertility of Leizhou goats. GO and KEGG enrichment analyses were performed on differentially expressed lncRNAs, circRNAs, and mRNAs and revealed considerable enrichment in pathways, such as regulation of hormone secretion, germ cell development, and gonadotropin-releasing hormone secretion. The pituitary lncRNAs (ENSCHIT00000010293, ENSCHIT00000010304, ENSCHIT00000010306, ENSCHIT00000010290, ENSCHIT00000010298, ENSCHIT00000006769, ENSCHIT00000006767, ENSCHIT00000006921, and ENSCHIT00000001330) and circRNAs (chicirc_029285, chicirc_026618, chicirc_129655, chicirc_018248, chicirc_122554, chicirc_087101, and chicirc_078945) identified as differentially expressed regulated hormone secretion in the pituitary through their respective host genes. Additionally, differential mRNAs (GABBR2, SYCP1, HNF4A, CBLN1, and CDKN1A) influenced goat fecundity by affecting hormone secretion in the pituitary gland. These findings contribute to the understanding of the molecular mechanisms underlying pituitary regulation of fecundity in Leizhou goats.

11.
Microbiome ; 11(1): 219, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779211

RESUMEN

BACKGROUND: Goat is an important livestock worldwide, which plays an indispensable role in human life by providing meat, milk, fiber, and pelts. Despite recent significant advances in microbiome studies, a comprehensive survey on the goat microbiomes covering gastrointestinal tract (GIT) sites, developmental stages, feeding styles, and geographical factors is still unavailable. Here, we surveyed its multi-kingdom microbial communities using 497 samples from ten sites along the goat GIT. RESULTS: We reconstructed a goat multi-kingdom microbiome catalog (GMMC) including 4004 bacterial, 71 archaeal, and 7204 viral genomes and annotated over 4,817,256 non-redundant protein-coding genes. We revealed patterns of feeding-driven microbial community dynamics along the goat GIT sites which were likely associated with gastrointestinal food digestion and absorption capabilities and disease risks, and identified an abundance of large intestine-enriched genera involved in plant fiber digestion. We quantified the effects of various factors affecting the distribution and abundance of methane-producing microbes including the GIT site, age, feeding style, and geography, and identified 68 virulent viruses targeting the methane producers via a comprehensive virus-bacterium/archaea interaction network. CONCLUSIONS: Together, our GMMC catalog provides functional insights of the goat GIT microbiota through microbiome-host interactions and paves the way to microbial interventions for better goat and eco-environmental qualities. Video Abstract.


Asunto(s)
Cabras , Microbiota , Animales , Archaea/genética , Bacterias/genética , Tracto Gastrointestinal/microbiología , Metano
12.
Antioxidants (Basel) ; 12(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37891930

RESUMEN

This study aimed to investigate the effects of the oat hay feeding method and compound probiotics (CMP) on the growth, health, serum antioxidant and immune indicators, rumen fermentation, and bacteria community of dairy calves from 3 to 5 months of age. Forty-eight female Holstein calves (80 ± 7 days of age, 93.71 ± 5.33 kg BW) were selected and randomly divided into four groups. A 2 × 2 factorial design was adopted for the experiment, with the factors of the oat hay feeding method (fed as free-choice or 16.7% in the diet) and compound probiotics (CMP) inclusion (0.15% or 0%) in the pelleted starter. The results showed that, compared with giving oat hay as free-choice, feeding a diet of 16.7% oat hay increased the pelleted starter intake at 1-84 d (p < 0.05), with an average daily gain (ADG) at 61-84 d (p = 0.02); adding CMP to the pelleted starter did not significantly affect body weight, and reduced the fecal index (p < 0.05). Feeding 16.7% oat hay increased the concentration of IgA, IgG, and IgM (p < 0.01), while adding CMP increased the catalase (p < 0.01) and decreased the concentration of malondialdehyde (p < 0.01) in serum. Feeding 16.7% oat hay increased the ruminal concentration of propionic acid (p < 0.05) and isobutyric acid (p = 0.08), and decreased the ruminal pH (p = 0.08), the concentration of acetic acid (p < 0.05), and the ratio of acetic acid to propionic acid (p < 0.01). Feeding 16.7% oat hay reduced the relative abundance of ruminal Firmicutes, Unidentified-Bacteria, Actinobacteria, Prevotella, NK4A214-group, Olsenella, and Actinobacteriota (p < 0.05); adding CMP increased the relative abundance of ruminal Prevotella, Rikenellaceae-RC9-gut-group, Ruminococcus, NK4A214-group, and Ruminococcus (p < 0.05), and decreased the abundance of Desulfobacterora, Prevotella-7, and Erysipelotricaceae-UCG-002 (p < 0.05). In conclusion, feeding a diet of 16.7% oat hay increased the pelleted starter intake and average daily gain, while slightly reducing the ruminal pH values; adding CMP to the pelleted starter resulted in reduced diarrhea incidence, increased serum antioxidant capacity and immunity, as well as ruminal richness and diversity of microorganisms in dairy calves from 3 to 5 months of age.

13.
Int J Biol Macromol ; 253(Pt 6): 127108, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37776927

RESUMEN

This study investigated the effects of Moringa oleifera polysaccharide on growth performance indicators, serum biochemical indicators, immune organ indicators, colonic morphology, colonic microbiomics and colonic transcriptomics in newborn calves. 21 newborn calves were randomly divided into three groups of 7 calves per treatment group: control group (no Moringa oleifera polysaccharide addition); low-dose group (Moringa oleifera polysaccharide 0.5 g/kg); and high-dose group (Moringa oleifera polysaccharide 1 g/kg). This trial used gavage to feed MOP to calves. The test lasted 8 weeks. Calves were humanely electroshocked on the last day of the trial and slaughtered afterwards. Thymus, spleen, blood and colonic contents were collected for further testing. The results of this trial showed that MOP significantly increased the body weight of newborn calves and reduced the rate of calf diarrhea, thus promoting calf growth. Fecal scores showed a linear decrease with the addition of MOP. In terms of serum biochemistry, feeding MOP significantly increased serum ALB levels in a linear fashion. In terms of serum antioxidants, feeding MOP linearly increased CAT and T-AOC levels and decreased MDA concentrations, and in terms of serum immunity, feeding MOP linearly increased IgA, IgG, and IgM levels. At the same time, MOP regulated the abundance of Firmicutes and Bacteroidetes in the intestinal tract of calves, which reduced the occurrence of diarrhea. In addition, moringa polysaccharide could regulate genes related to inflammatory signaling pathways such as MAPK signaling pathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway in calves' intestine to reduce the occurrence of intestinal inflammation. In conclusion, MOP can be used as a novel ruminant additive for the prevention of enteritis in calves.


Asunto(s)
Microbiota , Moringa oleifera , Animales , Bovinos , Moringa oleifera/química , Transcriptoma , Fosfatidilinositol 3-Quinasas , Polisacáridos/farmacología , Polisacáridos/análisis , Diarrea , Hojas de la Planta/química
14.
Microorganisms ; 11(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37630463

RESUMEN

Capsaicin (CAP) has various biological activities; it has antibacterial, anti-inflammatory and antioxidant properties, and stimulates intestinal development. The aim of this study was to investigate the effect of CAP on the health of nursing calves under group housing conditions. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups of eight calves each. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of CAP in each of the three treatment groups. Following a one-month clinical trial of individual-pen housing, an extended one-month trial of group housing was conducted. At the end of the trial, serum samples, rectal fecal samples and upper respiratory swab samples were collected to determine the effect of CAP addition on serum parameters, fecal fermentation parameters and upper respiratory microbiota of calves under group housing conditions. The results showed that the addition of high doses of CAP decreased calf respiratory scores (p < 0.05), increased serum glutathione peroxidase, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 concentration (p < 0.05), and decreased malondialdehyde, amyloid A and haptoglobin concentration (p < 0.05). Moreover, high doses of CAP increased the rectal fecal concentration of total short-chain fatty acids, acetate and butyric acid (p < 0.05). In addition, CAP regulated the upper respiratory tract microbiota, with high doses of CAP reducing Mycoplasma abundance (p < 0.05), two doses of CAP reducing Corynebacterium abundance (p < 0.05) and a tendency to reduce Staphylococcus abundance (p = 0.06). Thus, CAP can improve calf antioxidant capacity, immune capacity and reduce inflammatory factors, stress proteins as well as improve gut fermentation and upper respiratory microbiota under group housing conditions, which is beneficial for healthy calf growth.

15.
Animals (Basel) ; 13(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570255

RESUMEN

Dairy cow mastitis is one of the common diseases of dairy cows, which will not only endanger the health of dairy cows but also affect the quality of milk. Dairy cow mastitis is an inflammatory reaction caused by pathogenic microorganisms and physical and chemical factors in dairy cow mammary glands. The number of SCC in the milk of dairy cows with different degrees of mastitis will increase in varying degrees. The rapid diagnosis of dairy cow mastitis is of great significance for dairy cow health and farm economy. Based on the results of many studies on the relationship between mastitis and somatic cell count in dairy cows, microflora, and metabolites in the milk of Holstein cows with low somatic cell level (SCC less than 200,000), medium somatic cell level (SCC up to 200,000 but less than 500,000) and high somatic cell level (SCC up to 5000,00) were analyzed by microbiome and metabolic group techniques. The results showed that there were significant differences in milk microbiota and metabolites among the three groups (p < 0.05), and there was a significant correlation between microbiota and metabolites. Meanwhile, in this experiment, 75 differential metabolites were identified in the H group and L group, 40 differential metabolites were identified in the M group and L group, and six differential microorganisms with LDA scores more than four were found in the H group and L group. These differential metabolites and differential microorganisms may become new biomarkers for the diagnosis, prevention, and treatment of cow mastitis in the future.

16.
Animals (Basel) ; 13(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570317

RESUMEN

In this study, changes in milk performance, nutrient digestibility, hindgut fermentation parameters and microflora were observed by inducing milk fat depression (MFD) in dairy cows fed with a high-starch or a high-fat diet. Eight Holstein cows were paired in a completely randomized cross-over design within two 35 d periods (18 d control period and 17d induction period). During the control period, all cows were fed the low-starch and low-fat diet (CON), and at the induction period, four of the cows were fed a high-starch diet with crushed wheat (IS), and the other cows were fed a high-fat diet with sunflower fat (IO). The results showed that, compared to when the cows were fed the CON diet, when cows were fed the IS or IO diet, they had lower milk fat concentrations, energy corrected milk, 3.5% fat-corrected milk yield, feed efficiency and apparent digestibility of NDF and ADF. However, cows fed the IO diet had a lower apparent digestibility of ether extracts. In addition, we observed that when cows were fed the high-starch (IS) or high-fat (IO) diet, they had a higher fecal concentration of propionate and acetate, and a lower NH3-N. Compared to when the cows were fed the CON diet, cows fed the IS diet had a lower pH, and cows fed the IO diet had a lower concentration of valerate in feces. In the hindgut microbiota, the relative abundance of Oscillospiraceae_UCG-005 was increased, while the Verrucomicrobiota and Lachnospiraceae_AC2044_group were decreased when cows were fed the IO diet. The relative abundance of Prevotellaceae_UCG-003 was increased, while the Alistipes and Verrucomicrobiota decreased, and the Treponema, Spirochaetota and Lachnospiraceae_AC2044_group showed a decreasing trend when cows were fed the IS diet. In summary, this study suggested that high-starch or high-fat feeding could induce MFD in dairy cows, and the high-fat diet had the greatest effect on milk fat; the high-starch or high-fat diet affected hindgut fermentation and apparent fiber digestibility. The changes in hindgut flora suggested that hindgut microbiota may be associated with MFD in cows.

17.
Animals (Basel) ; 13(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570353

RESUMEN

Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.

18.
BMC Genomics ; 24(1): 499, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644462

RESUMEN

This paper aims to explore the role of circRNA expression profiles and circRNA-associated ceRNA networks in the regulation of myogenesis in the longissimus dorsi of cattle breeds surviving under subtropical conditions in southern China by RNA sequencing and bioinformatics analysis. It also aims to provide comprehensive understanding of the differences in muscle fibers in subtropical cattle breeds and to expand the knowledge of the molecular networks that regulate myogenesis. With regard to meat quality indicators, results showed that the longissimus dorsi of LQC had lower pH (P < 0.0001), lower redness (P < 0.01), lower shear force (P < 0.05), and higher brightness (P < 0.05) than the longissimus dorsi of LFC. With regard to muscle fiber characteristics, the longissimus dorsi of LQC had a smaller diameter (P < 0.0001) and higher density of muscle fibers (P < 0.05). The analysis results show that the function of many circRNA-targeted mRNAs was related to myogenesis and metabolic regulation. Furthermore, in the analysis of the function of circRNA source genes, we hypothesized that btacirc_00497 and btacirc_034497 may regulate the function and type of myofibrils by affecting the expression of MYH6, MYH7, and NEB through competitive linear splicing.


Asunto(s)
Biología Computacional , ARN Circular , Animales , Bovinos/genética , China , Carne , Músculos Paraespinales
19.
Animals (Basel) ; 13(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508086

RESUMEN

Capsaicin is the active ingredient of the red pepper plant of the genus Capsicum. The aim of this study was to investigate the effects of different doses of capsaicin on growth performance, antioxidant capacity, immunity, fecal fermentation parameters and gut microbial composition in nursing calves. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups, which each consisted of eight calves. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of capsaicin in each of the three treatment groups. During the 4-week experiment, intake was recorded daily, body weight and body size parameters were measured at the beginning and end of the trial and serum samples and rectal fecal samples were collected at the end of the trial to determine serum parameters, fecal fermentation parameters and fecal microbiome compartments. The results showed that both doses of capsaicin had no negative effect on the growth performance or the fecal fermentation parameters of calves, and the higher dose (0.3 mL/d) of capsaicin significantly improved the antioxidant capacity and immunity of calves. The calves in the high-dose capsaicin-treated group had lower fecal scores than those recorded in the control group. High doses of capsaicin increased glutathione antioxidant enzyme, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 levels and decreased malondialdehyde and bound bead protein levels. In addition, capsaicin regulated the gut microbiota, reducing the abundance of diarrhea-associated bacteria, such as Eggerthella, Streptococcus, Enterococcus and Enterobacteriaceae, in the gut of calves in the treated group. Therefore, high doses of capsaicin can improve the antioxidant and immune capacity of calves without affecting growth performance, as well as improve the gut microbiological environment, which enables the healthy growth of calves.

20.
Tissue Eng Regen Med ; 20(5): 647-660, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37131016

RESUMEN

BACKGROUND: Wound healing is a complicated biological process that leads to the regeneration of damaged skin tissue. Determining the methods to promote wound healing has become a hot topic in medical cosmetology and tissue repair research. Mesenchymal stem cells (MSCs) are a group of stem cells with the potential of self-renewal and multi-differentiation. MSCs transplantation has a broad application prospect in wound healing therapy. Many studies have demonstrated that the therapeutic capacity of MSCs is mainly mediated by paracrine actions. Exosomes (EXOs), which are nanosized vesicles carrying a variety of nucleic acids, proteins and lipids, are an important component of paracrine secretion. It has been demonstrated that exosomal microRNAs (EXO-miRNAs) play a key role in the function of exosomes. METHODS: In this review, we focus on current research on miRNAs from MSC-derived exosomes (MSC-EXO miRNAs) in terms of sorting, releasing and function and their effects on inflammation regulation, epidermal cell function, fibroblast function, and extracellular matrix formation. At last, we discuss the current attempts to improve the treatment of MSC-EXO-miRNAs. RESULTS: Many studies have demonstrated that MSC-EXO miRNAs play a key role in promoting wound healing. They have been shown to regulate inflammation response, enhance epidermal cell proliferation and migration, stimulate fibroblast proliferation and collagen synthesis, and regulate extracellular matrix formation. Besides, there have been a number of strategies developed to promote MSC-EXO and MSC-EXO miRNAs for wound healing treatment. CONCLUSION: Utilizing the association of exosomes from MSCs with miRNAs may be a promising strategy to promote trauma healing. MSC-EXO miRNAs may provide a new approach to promote wound healing and improve the quality of life for patients with skin injuries.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Calidad de Vida , Cicatrización de Heridas/genética , Células Madre Mesenquimatosas/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...