Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10357-10366, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574191

RESUMEN

Electrochemical reduction of carbon dioxide to organic chemicals provides a value-added route for mitigating greenhouse gas emissions. We report a family of carbon-supported Sn electrocatalysts with the tin size varying from single atom, ultrasmall clusters to nanocrystallites. High single-product Faradaic efficiency (FE) and low onset potential of CO2 conversion to acetate (FE = 90% @ -0.6 V), ethanol (FE = 92% @ -0.4 V), and formate (FE = 91% @ -0.6 V) were achieved over the catalysts of different active site dimensions. The CO2 conversion mechanism behind these highly selective, size-modulated p-block element catalysts was elucidated by structural characterization and computational modeling, together with kinetic isotope effect investigation.

2.
Science ; 380(6645): 609-616, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167381

RESUMEN

Discovery of earth-abundant electrocatalysts to replace iridium for the oxygen evolution reaction (OER) in a proton exchange membrane water electrolyzer (PEMWE) represents a critical step in reducing the cost for green hydrogen production. We report a nanofibrous cobalt spinel catalyst codoped with lanthanum (La) and manganese (Mn) prepared from a zeolitic imidazolate framework embedded in electrospun polymer fiber. The catalyst demonstrated a low overpotential of 353 millivolts at 10 milliamperes per square centimeter and a low degradation for OER over 360 hours in acidic electrolyte. A PEMWE containing this catalyst at the anode demonstrated a current density of 2000 milliamperes per square centimeter at 2.47 volts (Nafion 115 membrane) or 4000 milliamperes per square centimeter at 3.00 volts (Nafion 212 membrane) and low degradation in an accelerated stress test.

3.
J Am Chem Soc ; 145(8): 4736-4745, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790398

RESUMEN

While trinuclear [FexM3-x(µ3-O)] cluster-based metal-organic frameworks (MOFs) have found wide applications in gas storage and catalysis, it is still challenging to identify the structure of open metal sites obtained through proper activations and understand their influence on the adsorption and catalytic properties. Herein, we use in situ variable-temperature single-crystal X-ray diffraction to monitor the structural evolution of [FexM3-x(µ3-O)]-based MOFs (PCN-250, M = Ni2+, Co2+, Zn2+, Mg2+) upon thermal activation and provide the snapshots of metal sites at different temperatures. The exposure of open Fe3+ sites was observed along with the transformation of Fe3+ coordination geometries from octahedron to square pyramid. Furthermore, the effect of divalent metals in heterometallic PCN-250 was studied for the purpose of reducing the activation temperature and increasing the number of open metal sites. The metal site structures were corroborated by X-ray absorption and infrared spectroscopy. These results will not only guide the pretreatment of [FexM3-x(µ3-O)]-based MOFs but also corroborate spectral and computational studies on these materials.

4.
Clin Pharmacol Drug Dev ; 12(3): 267-272, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321352

RESUMEN

Potassium (K+ ) is an endogenous substance that is an essential dietary component. However, the interaction between dietary arrangements and specific effects of dietary K+ intake in bioequivalence studies remains unclear. To investigate the influence of dietary arrangement on the bioequivalence of potassium chloride (KCl) sustained-release tablets in healthy Chinese volunteers, the pharmacokinetics of KCl were compared in two open-label, single-center, randomized, two-period crossover studies with different dietary conditions. All volunteers received an oral dose of 6 g of KCl sustained-release tablets under fasting conditions, with different dietary arrangements. Urine samples were collected on baseline days and 48 hours after tablet consumption. Inductively coupled plasma-optical emission spectrometry was used to measure the concentration of K+ in the urine samples. Pharmacokinetic parameters were analyzed using Phoenix WinNonlin software in a noncompartmental model. In either clinical trial, no significant differences were observed in the maximal rate of urinary excretion and cumulative urinary excretion from 0 to 24 hours of K+ between the reference and test drugs. The bioequivalence studies of both KCl sustained-release tablet formulations were successfully conducted under different dietary conditions.


Asunto(s)
Cloruro de Potasio , Equivalencia Terapéutica , Humanos , Preparaciones de Acción Retardada , Pueblos del Este de Asia , Cloruro de Potasio/farmacocinética , Comprimidos , Estudios Cruzados
5.
Small ; 18(2): e2102477, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34585513

RESUMEN

Next-generation desalination technologies are needed to meet the increasing demand for clean water. Capacitive deionization (CDI) is a thermodynamically efficient technique to treat non-potable water with relatively low salinity. The salt removal capacity and rate of CDI are highly dependent on the electrode materials, which are preferentially porous to store ions through electrosorption and/or redox reactions. Metal-organic frameworks (MOFs) with "infinite" combinations of transition metals and organic linkers simplify the production of carbonaceous materials often with redox-active components after pyrolysis. MOFs-derived materials show great tunability in both compositions and structures but require further refinement to improve CDI performance. This review article summarizes recent progress in derivatives of MOFs and MOF-like materials used as CDI electrodes, focusing on the structural and compositional material considerations as well as the processing parameters and electrode architectures of the device. Furthermore, the challenges and opportunities associated with this research area are also discussed.


Asunto(s)
Estructuras Metalorgánicas , Purificación del Agua , Electrodos , Iones , Salinidad , Purificación del Agua/métodos
6.
Adv Mater ; 33(25): e2008023, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33984166

RESUMEN

Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.

7.
Chemphyschem ; 20(15): 1997-2009, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31177637

RESUMEN

In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.

8.
Science ; 362(6420): 1276-1281, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30409809

RESUMEN

Achieving high catalytic performance with the lowest possible amount of platinum is critical for fuel cell cost reduction. Here we describe a method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeolitic imidazolate frameworks as precursors. Synergistic catalysis between strained platinum-cobalt core-shell nanoparticles over a platinum-group metal (PGM)-free catalytic substrate led to excellent fuel cell performance under 1 atmosphere of O2 or air at both high-voltage and high-current domains. Two catalysts achieved oxygen reduction reaction (ORR) mass activities of 1.08 amperes per milligram of platinum (A mgPt -1) and 1.77 A mgPt -1 and retained 64% and 15% of initial values after 30,000 voltage cycles in a fuel cell. Computational modeling reveals that the interaction between platinum-cobalt nanoparticles and PGM-free sites improves ORR activity and durability.

10.
Nat Commun ; 8: 15938, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28737170

RESUMEN

For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

11.
Nano Lett ; 17(2): 953-962, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28072542

RESUMEN

Sodium-ion batteries (SIBs) have been considered as one of the promising power source candidates for the stationary storage industries owing to the much lower cost of sodium than lithium. It is well-known that the electrode materials largely determine the energy density of the battery systems. However, recent discoveries on the electrode materials showed that most of them present distinct lithium and sodium storage performance, which is not yet well understood. In this work, we performed a comparative understanding on the structural changes of porous cobalt oxide during its electrochemical lithiation and sodiation process by in operando synchrotron small angel X-ray scattering, X-ray diffraction, and X-ray absorption spectroscopy. It was found that compared to the lithiation process, the porous cobalt oxide undergoes less pore structure changes, oxidation state, and local structure changes as well as crystal structure evolution during its sodiation process, which is attributed to the intrinsic low sodiation activity of cobalt oxide as evidenced by ab initio molecular dynamics simulations. Moreover, it was indicated that the sodiation activity of metal sulfides is higher than that of metal oxides, indicating a better candidate for SIBs. Such understanding is crucial for future design and improvement of high-performance electrode materials for SIBs.

12.
Nat Mater ; 15(9): 1023-30, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27348576

RESUMEN

Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young's modulus that is 2-3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.

13.
Proc Natl Acad Sci U S A ; 112(34): 10629-34, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261338

RESUMEN

Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.

14.
Adv Mater ; 27(34): 5070-4, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26183798

RESUMEN

A new high-capacity reversible hydrogen-storage material synthesized by the encapsulation of NaBH4 nanoparticles in graphene is reported. This approach effectively prevents phase agglomeration or separation during successive H2 discharge/recharge processes and enables rapid H2 uptake and release in NaBH4 under mild conditions. The strategy advanced here paves a new way for application in energy generation and storage.

15.
ChemSusChem ; 7(2): 543-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24399807

RESUMEN

Nanocrystalline lithium peroxide (Li2 O2 ) is considered to play a critical role in the redox chemistry during the discharge-charge cycling of the Li-O2 batteries. In this report, a spatially resolved, real-time synchrotron X-ray diffraction technique was applied to study the cyclic formation/decomposition of Li2 O2 crystallites in an operating Li-O2 cell. The evaluation of Li2 O2 grain size, concentration, and spatial distribution inside the cathode is demonstrated under the actual cycling conditions. The study not only unambiguously proved the reversibility of the Li2 O2 redox reaction during reduction and evolution of O2 , but also allowed for the concentration and dimension growths of the peroxide nanocrystallites to be accurately measured at different regions within the cathode. The results provide important insights for future investigation on mass and charge transport properties in Li2 O2 and improvement in cathode structure and material design.


Asunto(s)
Suministros de Energía Eléctrica , Compuestos de Litio/química , Litio/química , Oxígeno/química , Peróxidos/química , Conductividad Eléctrica
16.
Adv Mater ; 26(7): 1093-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24357431

RESUMEN

A facile synthesis of non-PGM ORR electrocatalysts through thermolysis of one-pot synthesized ZIF is demonstrated. The electrocatalysts exhibit excellent activity, with a maximum volumetric current density of 88.1 A cm(-3) measured at 0.8 V in PEFC tests. This approach not only makes ZIFs-based electrocatalysts easy to scale up, but also paves the way for the tailored synthesis of electrocatalysts.

17.
Nat Commun ; 4: 2255, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23929396

RESUMEN

Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium.

19.
J Phys Chem A ; 117(39): 9807-13, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23697577

RESUMEN

The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru3(CO)12, by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru3(CO)10 being the most dominating one. The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions.

20.
Inorg Chem ; 52(7): 3884-90, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23506305

RESUMEN

TiO2, in the rutile phase with a high concentration of self-doped Ti(3+), has been synthesized via a facile, all inorganic-based, and scalable method of oxidizing TiH2 in H2O2 followed by calcinations in Ar gas. The material was shown to be photoactive in the visible-region of the electromagnetic spectrum. Powdered X-ray diffraction (PXRD), transmission electron microscopy (TEM), ultraviolet-visible-near-infrared (UV-vis-NIR), diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET) methods were used to characterize the crystalline, structural, and optical properties and specific surface area of the as-synthesized Ti(3+)-doped rutile, respectively. The concentration of Ti(3+) was quantitatively studied by electron paramagnetic resonance (EPR) to be as high as one Ti(3+) per ~4300 Ti(4+). Furthermore, methylene blue (MB) solution and an industry wastewater sample were used to examine the photocatalytic activity of the Ti(3+)-doped TiO2 which was analyzed by UV-vis absorption, Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). In comparison to pristine anatase TiO2, our Ti(3+) self-doped rutile sample exhibited remarkably enhanced visible-light photocatalytic degradation on organic pollutants in water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...