Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Heliyon ; 10(9): e30434, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737248

RESUMEN

Contrast-induced acute kidney injury (CI-AKI) is a growingly common kidney problem caused by medical procedures involving contrast media (CM), especially in older patients with existing health issues. It is crucial to pinpoint potential biomarkers for the early detection of CI-AKI. Previously, we observed that iodixanol affects glucose, choline, and glutathione metabolism in endothelial cells under laboratory conditions. In this study, we used 1H NMR-based metabolomics to examine the metabolic changes in the blood plasma of elderly patients with cardiovascular disease (CVD) before and after receiving iodixanol. We identified altered metabolites in plasma 24 and 48 h after iodixanol injection compared to levels before injection. Notably, metabolites such as glucose, unsaturated fatty acids (UFA), low-density lipoprotein (LDL)/very low-density lipoprotein (VLDL), pyruvate, choline, and glycine showed potential as biomarkers at 24 h post-injection compared to levels before injection. Similarly, glucose, pyruvate, lactate, choline, and glycine in plasma could serve as potential biomarkers at 48 h post-injection. Iodixanol notably affected pathways related to glycolysis, fatty acid breakdown, and amino acid metabolism according to our metabolic pathway analysis. The altered levels of specific metabolites in plasma could be indicative of CM-induced kidney injury. Overall, this research aids in understanding the physiological mechanisms involved and in identifying early biomarkers and prevention strategies for CI-AKI.

2.
Chemosphere ; 358: 142065, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636916

RESUMEN

Sulfoxaflor is a widely used fourth-generation neonicotinoid pesticide, which has been detected in biological and environmental samples. Sulfoxaflor can potentially be exposed to humans via the food chain, thus understanding its toxic effects and enantioselective bioaccumulation is crucial. In this study, toxicokinetics, bioaccumulation, tissue distribution and enantiomeric profiles of sulfoxaflor in rats were investigated through single oral exposure and 28-days continuous exposure experiment. Sulfoxaflor mainly accumulated in liver and kidney, and the (-)-2R,3R-sulfoxaflor and (-)-2S,3R-sulfoxaflor had higher enrichment than their enantiomers in rats. The toxicological effects were evaluated after 28-days exposure. Slight inflammation in liver and kidney were observed by histopathology. Sphingolipid, amino acid, and vitamin B6 metabolism pathways were significantly disturbed in metabonomics analysis. These toxicities were in compliance with dose-dependent effects. These results improve understanding of enantioselective bioaccumulation and the potential health risk of sulfoxaflor.

3.
Acta Pharmacol Sin ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491161

RESUMEN

Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 µM) promoted wound healing and reduced cell apoptosis. NGR1 (100 µM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/ß-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/ß-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/ß-Catenin signaling pathway.

4.
J Agric Food Chem ; 72(12): 6167-6177, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38500001

RESUMEN

Antibiotics can be accidentally introduced into farmland by wastewater irrigation, and the environmental effects are still unclear. In this study, the effects of oxytetracycline on the residue of imidacloprid in soil and radishes were investigated. Besides, the rhizosphere microbiome and radish metabolome were analyzed. It showed that the persistence of imidacloprid in soil was unchanged, but the content of olefin-imidacloprid was increased by oxytetracycline. The residue of imidacloprid in radishes was increased by nearly 1.5 times, and the hazard index of imidacloprid was significantly raised by 1.5-4 times. Oxytetracycline remodeled the rhizosphere microbiome, including Actinobe, Elusimic, and Firmicutes, and influenced the metabolome of radishes. Especially, some amino acid metabolic pathways in radish were downregulated, which might be involved in imidacloprid degradation. It can be assumed that oxytetracycline increased the imidacloprid residue in radish through disturbing the plant-rhizosphere microbiome holobiont and, thus, increased the pesticide dietary risk.


Asunto(s)
Microbiota , Neonicotinoides , Nitrocompuestos , Oxitetraciclina , Raphanus , Raphanus/química , Oxitetraciclina/metabolismo , Oxitetraciclina/farmacología , Rizosfera , Suelo/química
5.
J Agric Food Chem ; 72(13): 7423-7437, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502791

RESUMEN

As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1ß, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Inflamación , Piretrinas , Ratones , Animales , Inflamación/inducido químicamente , Inflamación/patología , Estrés Oxidativo , Homeostasis
6.
Pestic Biochem Physiol ; 199: 105804, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458671

RESUMEN

Chemical fertilizer and pesticide are necessary in agriculture, which have been frequently used, sometimes even at the same time or in combination. To understand the interactions of them could be of significance for better use of these agrochemicals. In this study, the influence of chemical fertilizers (urea, potassium sulfate, ammonium sulfate and superphosphate) on the control efficacy and environmental behavior of abamectin was investigated, which could be applied in soil for controlling nematodes. In laboratory assays, ammonium sulfate at 1 and 2 g/L decreased the LC50 values of abamectin to Meloidogyne incognita from 0.17 mg/L to 0.081 and 0.043 mg/L, indicating it could increase the contact toxicity. In greenhouse trial, ammonium sulfate at 1000 mg/kg increased the control efficacy of abamectin by 1.37 times. Meanwhile, the combination of abamectin with ammonium sulfate could also promote the tomato seedling growth as well as the defense-related enzyme activity under M. incognita stress. The persistence and mobility of abamectin in soil were significantly elevated by ammonium sulfate, which could prolong and promote the control efficacy against nematodes. These results could provide reference for reasonable use of abamectin and fertilizers so as to increase the control efficacy and minimize the environmental risks.


Asunto(s)
Fertilizantes , Ivermectina/análogos & derivados , Tylenchoidea , Animales , Suelo , Sulfato de Amonio
7.
J Hazard Mater ; 469: 133974, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518695

RESUMEN

Pesticides and fertilisers are frequently used and may co-exist on farmlands. The overfertilisation of soil may have a profound influence on pesticide residues, but the mechanism remains unclear. The effects of chemical fertilisers on the environmental behaviour of atrazine and their underlying mechanisms were investigated. The present outcomes indicated that the degradation of atrazine was inhibited and the half-life was prolonged 6.0 and 7.6 times by urea and compound fertilisers (NPK) at 1.0 mg/g (nitrogen content), respectively. This result, which was confirmed in both sterilised and transfected soils, was attributed to the inhibitory effect of nitrogen fertilisers on soil microorganisms. The abundance of soil bacteria was inhibited by nitrogen fertilisers, and five families of potential atrazine degraders (Micrococcaceae, Rhizobiaceae, Bryobacteraceae, Chitinophagaceae, and Sphingomonadaceae) were strongly and positively (R > 0.8, sig < 0.05) related to the decreased functional genes (atzA and trzN), which inhibited hydroxylation metabolism and ultimately increased the half-life of atrazine. In addition, nitrogen fertilisers decreased the sorption and vertical migration behaviour of atrazine in sandy loam might increase the in-situ residual and ecological risk. Our findings verified the weakened atrazine degradation with nitrogen fertilisers, providing new insights into the potential risks and mechanisms of atrazine in the context of overfertilisation.


Asunto(s)
Atrazina , Herbicidas , Contaminantes del Suelo , Atrazina/química , Suelo/química , Fertilizantes , Nitrógeno , Metaboloma , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Herbicidas/metabolismo , Biodegradación Ambiental
8.
J Pharm Biomed Anal ; 243: 116083, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447348

RESUMEN

Daratumumab, a humanized monoclonal antibody utilized in treating immunoglobulin light-chain amyloidosis and relapsed/refractory multiple myeloma, was quantified in rat serum through a simple, economical and effective liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. A surrogate peptide, LLIYDASNR, derived from trypsin hydrolysis, was quantitatively analyzed with LLIYDASN [13C6, 15N4] RAT as an internal standard. This corrected variations from sample pretreatment and mass spectrometry response, involving denaturation and trypsin hydrolysis in a two-step process lasting approximately 1 hour. Methodological validation demonstrated a linear range of 1 µg/mL to 1000 µg/mL in rat serum. Precision, accuracy, matrix effect, sensitivity, stability, selectivity, carryover, and interference met acceptance criteria. The validated LC-MS/MS approach was successfully applied to a pharmacokinetic study of daratumumab in rats at an intravenous dose of 15 mg/kg.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Tripsina , Espectrometría de Masas en Tándem/métodos , Anticuerpos Monoclonales/química , Inmunoglobulina G , Digestión , Reproducibilidad de los Resultados
9.
J Pharm Biomed Anal ; 242: 116012, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354539

RESUMEN

Linaprazan (AZD0865, TX07) is one of potassium-competitive acid blockers. However, linaprazan is rapidly excreted from the body, shortening its acid inhibition property. Linaprazan glurate (X842) is a prodrug of linaprazan with a prolonged inhibitory effect on gastric acid secretion. Linaprazan glurate has entered clinical trials, but few studies have reported its metabolism in non-clinical and clinical settings. In this study, we studied the pharmacokinetics, tissue distribution, mass balance, and metabolism of linaprazan glurate in rats after a single oral dose of 2.4 mg/kg (100 µCi/kg) [14C]linaprazan glurate. The results demonstrated that linaprazan glurate was mainly excreted via feces in rats with 70.48% of the dose over 168 h. The plasma AUC0-∞ of linaprazan glurate in female rats was 2 times higher than that in male rats. Drug-related substances were mainly concentrated in the stomach, eyes, liver, small intestine, and large intestine after administration. In blood, drug-related substances were mostly distributed into plasma instead of hemocytes. In total, 13 metabolites were detected in rat plasma, urine, feces, and bile. M150 (2,6-dimethylbenzoic acid) was the predominant metabolite in plasma, accounting for 80.65% and 67.65% of AUC0-24h in male and female rats, respectively. Based on the structures, linaprazan glurate was mainly hydrolyzed into linaprazan, followed by a series of oxidation, dehydrogenation, and glucuronidation in rats. Besides, CES2 is the main metabolic enzyme involved in the hydrolysis of linaprazan glurate to linaprazan.


Asunto(s)
Líquidos Corporales , Compuestos Heterocíclicos con 2 Anillos , Ratas , Masculino , Femenino , Animales , Heces/química , Bilis/metabolismo , Plasma , Administración Oral
10.
CNS Neurosci Ther ; 30(4): e14535, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38168094

RESUMEN

INTRODUCTION: Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS: This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS: Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS: Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Traumatismos de la Médula Espinal , Animales , Ratas , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Proteína GAP-43/genética , Proteína GAP-43/metabolismo
11.
PLoS One ; 19(1): e0296994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38277371

RESUMEN

BACKGROUND: Immune-mediated conjunctivitis is a prevalent ocular ailment characterized by inflammation and immune reactions in the conjunctiva. However, the precise causes and therapeutic approaches for this condition remain the main focus for numerous ophthalmological specialists. Recently, accumulating evidence from human and mouse experiments has demonstrated the critical involvement of the NLRP3 inflammasome, IL-1ß, and IL-18 in the development of allergic diseases. Targeting specific NLRP3 inflammasome and its related inhibitors may hold potential as therapeutic agents for immunologic conjunctivitis. Despite this, there has been no systematic review specifically addressing the treatment of immunologic conjunctivitis related to NLRP3. Therefore, this study aims to conduct a systematic review and meta-analysis of currently published randomized controlled trials (RCTs) on NLRP3-related treatments for immunologic conjunctivitis patients, with the goal of evaluating their efficacy and safety. METHODS: We will conduct a comprehensive search for relevant studies on NLRP3 inflammasome inhibitors or NLRP3-related treatments for immunologic conjunctivitis in various databases including PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP, and Wanfang. The search will encompass studies from their respective inception dates to July 2023. A meta-analysis will be performed using data extracted from eligible randomized controlled trials (RCTs), focusing on the clinical manifestations of immunologic conjunctivitis, levels of NLRP3-related factors in serum or tear samples, quality of life outcomes, and adverse events. Review Manager 5.4.1 software will be employed for the meta-analysis, and the results will be analyzed using either random-effects or fixed-effects models, depending on the presence of heterogeneity. The reliability and quality of evidence will be evaluated using the Grading of Recommendations, Development, and Evaluation (GRADE) system. RESULTS: The findings of this study will yield robust and high-quality evidence regarding the efficacy and safety of NLRP3-related treatments for immunologic conjunctivitis. This evidence will contribute significantly to our understanding of the potential benefits and risks associated with such treatments and will assist healthcare professionals in making informed decisions regarding the management of immunologic conjunctivitis. CONCLUSION: This study represents the first comprehensive meta-analysis aiming to evaluate the efficacy and safety of NLRP3-related treatments for immunologic conjunctivitis. The findings from this study will provide valuable evidence to guide clinical management strategies for this disease. The results are anticipated to significantly contribute to the understanding of the therapeutic potential and safety profile of NLRP3-related treatments, offering valuable insights for healthcare professionals involved in the care of patients with immunologic conjunctivitis. TRIAL REGISTRATION: Systematic review registration: PROSPERO with registration number CRD42023437076.


Asunto(s)
Conjuntivitis , Inflamasomas , Animales , Humanos , Metaanálisis como Asunto , Proteína con Dominio Pirina 3 de la Familia NLR , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Revisiones Sistemáticas como Asunto
12.
Environ Pollut ; 342: 122909, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036092

RESUMEN

Microplastic is an emerging environmental pollutant with potential health risks. Recent studies have shown that microplastic could impair gut homeostasis in mammals. Although it has been widely demonstrated that gut dyshomeostasis could impact renal health through the gut-kidney axis, the effects of microplastic-induced gut dyshomeostasis on renal health and underlying mechanisms are still largely unknown. In the current work, we found that polystyrene microplastics (PS-MPs) treatment impaired the gut barrier, increased urinary complement-activated product C5a levels and renal C5aR expression, leading to chronic kidney disease-related symptoms in mice. Restoring the gut barrier using an antibiotic mixture effectively alleviated PS-MPs-induced kidney injury, indicating the involvement of the gut-kidney axis in PS-MPs-induced renal injury. Moreover, it also mitigated PS-MPs-induced alterations in urinary C5a levels and renal C5aR expression, suggesting that the renal C5a/C5aR pathway might be involved in PS-MPs' impacts on the gut-kidney axis. Further experiments using a C5aR inhibitor, PMX53, verified the vital role of renal C5a/C5aR pathway activation in the development of kidney injury induced by PS-MPs. Collectively, our results suggest that PS-MPs induce kidney injury in mice by impairing the gut barrier, increasing C5a levels, and ultimately activating the renal C5a/C5aR pathway, highlighting the crucial role of the gut-kidney axis in PS-MPs-induced kidney injury.


Asunto(s)
Microplásticos , Plásticos , Animales , Ratones , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/metabolismo , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Riñón/metabolismo , Mamíferos
13.
Cell Signal ; 116: 111014, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38110168

RESUMEN

It has been reported that the formation of neutrophil extracellular traps (NETs) is associated with cancer metastasis. The current study aimed to explore the effects of NETs on gastric cancer (GC) cell metastasis and uncover their underlying mechanism. NETs were measured in the plasma of patients with GC. Then, GC cells were treated with NETs to assess cell viability, migration, and invasion using cell counting kit 8 and Transwell assay, The liver metastasis and xenograft tumor mouse models were established to assess tumor growth and metastasis. The N4-acetylcytidine (ac4C) modification of SET and MYND domain containing 2 (SMYD2) mediated by NAT10 was evaluated using acetylated RNA immunoprecipitation. The results showed that the level of NETs was increased in the plasma of patients with GC, particularly in those with metastatic GC. In addition, GC cell co-treatment with NETs promoted cell viability, migration and invasion, while NAT10 or SMYD2 knockdown abrogated this effect. NAT10 also promoted the ac4C modification of SMYD2, thus increasing SMYD2 stability. Furthermore, NETs promoted the metastasis of GC cells in the liver in vivo. Overall, the results of the present study demonstrated that NETs promoted GC cell metastasis via the NAT10-mediated ac4C modification of SMYD2. These findings suggested that inhibiting the formation of NETs could be an effective approach for attenuating GC progression.


Asunto(s)
Citidina/análogos & derivados , Trampas Extracelulares , Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , N-Metiltransferasa de Histona-Lisina , Acetiltransferasas N-Terminal
14.
Anal Chem ; 95(46): 16868-16876, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37947381

RESUMEN

In Alzheimer's disease, hypochlorous acid involved in the clearance of invading bacteria or pathogens and butyrylcholinesterase engaged in the hydrolysis of the neurotransmitter acetylcholine are relatively significantly altered. However, there are few dual detection probes for hypochlorous acid and butyrylcholinesterase. In addition, single-response probes suffer from serious off-target effects and near-infrared probes do not easily penetrate the blood-brain barrier due to their excessive molecular weight. In this work, we constructed a two-photon fluorescent probe that recognizes hypochlorous acid and butyrylcholinesterase based on a dual-lock strategy. The thiocarbonyl group is oxidized in the presence of hypochlorous acid, and the hydrolysis occurs at the 7-position ester bond in the existence of butyrylcholinesterase, releasing a strongly fluorescent fluorophore, 4-methylumbelliferone. Excellent imaging was performed in PC12 cells using this probe, and deep two-photon imaging was observed in the brains of AD mice after tail vein injection with this probe. It indicates that the probe can provide a promising tool for the more precise diagnosis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Butirilcolinesterasa/metabolismo , Ácido Hipocloroso , Colorantes Fluorescentes/química , Encéfalo/metabolismo
15.
Pak J Pharm Sci ; 36(5): 1457-1466, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37869922

RESUMEN

The effect of sericin in high glucose (HG)-induced podocyte injury and the mechanisms involving Snai1 and miR-30a-5p were investigated. Bioinformatics and dual-luciferase reporter assay evaluated the relationship of Snai1 with miR-31a-5p. Podocyte injury mouse induced by HG were randomly divided into control (5.5mmol/L D-glucose), HG (30mmol/L D-glucose), HG + Sericin (30mmol/L D-glucose+600µg/ml sericin), miR-30a-5p inhibitor NC (sericin+30mmol/L D-glucose+miR-30a-5p inhibitor negative control) and miR-30a-5p inhibitor groups (sericin+30mmol/L D-glucose+miR-30a-5p inhibitor). The migration ability of podocytes was detected by Transwell assay. The expressions of Snai1, podocin, E-cadherin, FSP-1, ZO-1, α-SMA, Desmin, and miR-30a-5p were assessed with RT-qPCR and Western blot. Snai1 was one direct target of miR-30a-5p. HG group had significantly larger number of migrated podocytes and higher levels of Snai1, FSP-1, α-SMA and Desmin, but significantly lower levels of podocin, ZO-1 and E-cadherin than control and HG + Sericin group. These effects of sericin were reversed by miR-30a-5p inhibitor, as evidenced by increased podocyte migration and increased expressions of Snai1, α-SMA, FSP-1 and Desmin, whereas decreased expressions of podocin, ZO-1 and E-cadherin. Sericin may protect podocytes from damage caused by HG via up-regulating epithelial phenotype markers, down-regulating mesenchymal phenotype markers, and reducing migration of podocytes. The mechanism may be through targeting miR-30a-5p and its target Snai1.


Asunto(s)
Transición Epitelial-Mesenquimal , MicroARNs , Podocitos , Sericinas , Animales , Ratones , Cadherinas/metabolismo , Desmina , Glucosa/toxicidad , MicroARNs/metabolismo , Podocitos/metabolismo , Sericinas/farmacología
16.
Environ Sci Technol ; 57(40): 14881-14891, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749806

RESUMEN

Thyroid dysfunction has become a serious public health problem, which is considered a trigger of nonalcoholic fatty liver disease (NAFLD). Pesticide exposure could contribute to thyroid dysfunction and NAFLD, but the relationship between these factors remains unclear. In this study, the effects of subchronic famoxadone exposure on thyroid and liver at no observed adverse effect level (NOEL) related concentrations were investigated using in vivo, in vitro, and in silico models. Famoxadone caused hepatic steatosis, lipid metabolism disorder, and liver oxidative stress and induced NAFLD in male mice. The suppression of hepatic fatty acid ß-oxidation was the key factor of NAFLD, which was highly associated with hypothalamic-pituitary-thyroid (HPT) axis hormones disorder. Famoxadone disrupted thyroid hormone biosynthesis by causing thyroid follicle aberrations and abnormal HPT axis-related gene expression. In vitro studies confirmed that famoxadone inhibited the transport of thyroxine (T4) into hepatocytes and the conversion of T4 to triiodothyronine (T3). In silico studies verified that famoxadone interfered with the binding of thyroid hormones to proteins mediating thyroid hormone transport, conversion, and activation. This study comprehensively reported the association between NAFLD and thyroid dysfunction caused by famoxadone, providing new perspectives for the health risk evaluation of pesticides with a similar structure in mammals.

17.
Nat Commun ; 14(1): 5850, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730674

RESUMEN

We previously reported initial clinical results of post-transcriptional gene silencing of BCL11A expression (NCT03282656) reversing the fetal to adult hemoglobin switch. A goal of this approach is to increase fetal hemoglobin (HbF) expression while coordinately reducing sickle hemoglobin (HbS) expression. The resulting combinatorial effect should prove effective in inhibiting HbS polymerization at lower physiologic oxygen values thereby mitigating disease complications. Here we report results of exploratory single-cell analysis of patients in which BCL11A is targeted molecularly and compare results with cells of patients treated with hydroxyurea (HU), the current standard of care. We use single-cell assays to assess HbF, HbS, oxygen saturation, and hemoglobin polymer content in RBCs for nine gene therapy trial subjects (BCLshmiR, median HbF% = 27.9) and compare them to 10 HU-treated subjects demonstrating high and comparable levels of HbF (HU High Responders, median HbF% = 27.0). All BCL11A patients achieved the primary endpoint for NCT03282656, which was defined by an absolute neutrophil count greater than or equal to 0.5 × 109 cells/L for three consecutive days, achieved within 7 weeks following infusion. Flow cytometric assessment of single-RBC HbF and HbS shows fewer RBCs with high HbS% that would be most susceptible to sickling in BCLshmiR vs. HU High Responders: median 42% of RBCs with HbS%>70% in BCLshmiR vs. 61% in HU High Responders (p = 0.004). BCLshmiR subjects also demonstrate more RBCs resistant to HbS polymerization at lower physiologic oxygen tension: median 32% vs. 25% in HU High Responders (p = 0.006). Gene therapy-induced BCL11A down-regulation reverses the fetal-to-adult hemoglobin switch and induces RBCs with higher HbF%, lower HbS%, and greater resistance to deoxygenation-induced polymerization in clinical trial subjects compared with a cohort of highly responsive hydroxyurea-treated subjects.


Asunto(s)
Hemoglobina Falciforme , Hidroxiurea , Adulto , Humanos , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Eritrocitos , Feto , Hemoglobina Fetal/genética , Factores de Transcripción
18.
BMC Gastroenterol ; 23(1): 284, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587418

RESUMEN

BACKGROUND: The TNM staging system cannot accurately predict the prognosis of postoperative gastric signet ring cell carcinoma (GSRC) given its unique biological behavior, epidemiological features, and various prognostic factors. Therefore, a reliable postoperative prognostic evaluation system for GSRC is required. This study aimed to establish a nomogram to predict the overall survival (OS) rate of postoperative patients with GSRC and validate it in the real world. METHODS: Clinical data of postoperative patients with GSRC from 2002 to 2014 were collected from the Surveillance, Epidemiology, and End Results database and randomly assigned to training and internal validation sets at a 7:3 ratio. The external validation set used data from 124 postoperative patients with GSRC who were admitted to the Affiliated Tumor Hospital of Harbin Medical University between 2002 and 2014. The independent risk factors affecting OS were screened using univariate and multivariate analyses to construct a nomogram. The performance of the model was evaluated using the C-index, receiver operating characteristic curve (ROC), calibration curve, decision analysis (DCA) curve, and adjuvant chemotherapy decision analysis. RESULTS: Univariate/multivariate analysis indicated that age, stage, T, M, regional nodes optimized (RNE), and lymph node metastasis rate (LNMR) were independent risk factors affecting prognosis. The C-indices of the training, internal validation, and external validation sets are 0.741, 0.741, and 0.786, respectively. The ROC curves for the first, third, and fifth years in three sets had higher areas under the curves, (training set, 0.782, 0.864, 0.883; internal validation set, 0.781, 0.863, 0.877; external validation set, 0.819, 0.863, 0.835). The calibration curve showed high consistency between the nomogram-predicted 1-, 3-, and 5-year OS and the actual OS in the three queues. The DCA curve indicated that applying the nomogram enhanced the net clinical benefits. The nomogram effectively distinguished patients in each subgroup into high- and low-risk groups. Adjuvant chemotherapy can significantly improve OS in high-risk group (P = 0.034), while the presence or absence of adjuvant chemotherapy in low-risk group has no significant impact on OS (P = 0.192). CONCLUSIONS: The nomogram can effectively predict the OS of patients with GSRC and may help doctors make personalized prognostic judgments and clinical treatment decisions.


Asunto(s)
Carcinoma de Células en Anillo de Sello , Neoplasias Gástricas , Humanos , Nomogramas , Neoplasias Gástricas/cirugía , Carcinoma de Células en Anillo de Sello/cirugía , Quimioterapia Adyuvante
19.
Environ Pollut ; 336: 122392, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37595736

RESUMEN

This study aimed to investigate the transgenerational impacts of maternal intake of polysorbate 80 (P80), an emulsifier widely used in modern society, on the development of offspring immunity. Our results revealed that maternal P80 treatment led to impaired differentiation of innate lymphoid cells (ILCs) and CD4+ T cells in the small intestinal lamina propria (SiLP), resulting in intestinal dyshomeostasis in female offspring. Furthermore, we found that SiLP ILCs abundances were significantly altered in 0-day-old fetuses from P80-treated mothers, indicating a prenatal impact of P80-treated mothers on offspring immunity. Additionally, cesarean section and foster-nursing studies demonstrated that P80-induced altered SiLP ILCs in 0-day-old fetuses could further induce dysregulation of ILCs and CD4+ T cells in the SiLP, thus promoting intestinal dysregulation in offspring later in life. Overall, our findings suggest that maternal P80 intake could prenatally program the development of offspring immunity, exerting a significant and long-lasting impact.

20.
Discov Oncol ; 14(1): 84, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256374

RESUMEN

PURPOSE: The present study aimed to explore the anticancer activity of hirsuteine (HST), an indole alkaloid from the traditional Chinese herbal medicine Uncaria rhynchophylla, against colorectal cancer (CRC) and the underlining mechanism. METHODS: MTT, colony formation, flow cytometry and MDC staining were conducted to confirm the antiproliferative effect of HST on human CRC cells harboring different p53 status. Protein expressions were evaluated by the Western blot analysis. p53 protein half-life and the interaction between p53 and MDM2 were investigated using cycloheximide (CHX)-chase assay and Co-immunoprecipitation (Co-IP), respectively. Transcriptional activity of p53 was examined by qRT-PCR and Chromatin immunoprecipitation (ChIP). Xenograft tumor in nude mice was created to evaluate in vivo anticancer effect of HST against CRC. RESULTS: HST inhibited cell growth, arrested cell cycle and induced autophagy, showing efficient anticancer effects on CRC cells independent of p53 status. In HCT-8 cells, HST prolonged wtp53 half-life, and upregulated mRNA level of p21, suggesting that HST activated the p53 pathway through enhancement of wtp53 stability and transcriptional activity. Meanwhile in SW620 cells, HST induced MDM2-mediated proteasomal degradation of mutp53R273H, increased the DNA-binding ability of mutp53R273H at the p21 promoter, and upregulated mRNA levels of p21 and MDM2, demonstrating the depletion of mutp53R273H and restoration of its wild-type-like properties by HST. p53 knockdown by siRNA significantly impaired the growth inhibition of HST on HCT-8 and SW620 cells. Moreover, HST showed anticancer effects in xenograft tumors, accompanied with an opposite regulation of wtp53 and mutp53 R273H in mechanism. CONCLUSION: This study revealed the anticancer efficacy of HST against CRC via opposite modulation of wtp53 and mutp53 R273H, indicating the potential of HST to be a CRC drug candidate targeting p53 signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...