Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Macromolecules ; 57(14): 6805-6815, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39071043

RESUMEN

Thermo- and photoresponsive nanoreactors based on shell cross-linked micelles (SCMs) for the rhodium-catalyzed asymmetric transfer hydrogenation (ATH) of ketones have been developed from poly(2-oxazoline) triblock terpolymers. The nanoreactors incorporate thermoresponsive poly(2-isopropyl-2-oxazoline) as the hydrophilic corona and are covalently cross-linked with a photoswitchable spiropyran molecule. UV irradiation or changes in temperature trigger morphology switching of the polymer-based nanoreactors that alters the hydrophobicity in separate layers of the SCMs, resulting in dynamic substrate selectivity of the ATH in water. Control experiments and kinetic studies show that the thermoresponsive outer layer induces the gated behavior for more hydrophobic substrates, whereas the photoresponsive cross-linking layer induces the gated behavior for less hydrophobic substrates. The nanoreactors mimic the multichannels in Nature, transporting substrates and reagents into the catalytic core which can be controlled through external triggers such as temperature and light wavelengths. Additionally, the nanoreactors can be easily recovered and reused with continued high activity and selectivities.

2.
Org Lett ; 24(23): 4099-4103, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35476916

RESUMEN

We describe the substrate-selective asymmetric transfer hydrogenation of aromatic ketones using rhodium complexes immobilized on a photoresponsive nanoreactor. The nanoreactor switches its morphology upon light irradiation in a wavelength-selective manner. Kinetic studies show that the gated behavior in the cross-linking layer is key to discriminating among substrates and reagents during catalysis. Under ultraviolet light irradiation, the nanoreactor displays substrate selectivity, converting smaller ketone substrates faster to the corresponding secondary alcohols.

3.
Chem Soc Rev ; 51(1): 57-70, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34881750

RESUMEN

The development of nonorthogonal tandem catalysis enables the use of a combination of arbitrary catalysts to rapidly synthesize complex products in a substainable, efficient, and timely manner. The key is to compartmentalise the molecular catalysts, thereby overcoming inherent incompatibilities between individual catalysts or reaction conditions. This tutorial review analyses the development of the past two decades in the field of nonorthogonal tandem catalysis with an emphasis on compartmentalisation strategies. We highlight design principles of functional materials for compartmentalisation and suggest future directions in the field of nonorthogonal tandem catalysis.


Asunto(s)
Catálisis
4.
Chem Sci ; 12(36): 12130-12137, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34667578

RESUMEN

We report herein that dendron-shaped macromolecules AB n crystallize into well-ordered pyramid-like structures from mixed solvents, instead of spherical motifs with curved structures, as found in the bulk. The design of the asymmetric molecular architecture and the choice of mixed solvents are applied as strategies to manipulate the crystallization process. In mixed solvents, the solvent selection for the Janus macromolecule and the existence of dominant crystalline clusters contribute to the formation of flat nanosheets. Whereas during solvent evaporation, the bulkiness of the asymmetric macromolecules easily creates defects within 2D nanosheets which lead to their spiral growth through screw dislocation. The size of the nanosheets and the growth into 2D nanosheets or 3D pyramidal structures can be regulated by the solvent ratio and solvent compositions. Moreover, macromolecules of higher asymmetry generate polycrystals of lower orderliness, probably due to higher localized stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA