Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 20(9): 1508-1520, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34210826

RESUMEN

Advanced peritoneal carcinomatosis including high-grade ovarian cancer has poor prognoses and a poor response rate to current checkpoint inhibitor immunotherapies; thus, there is an unmet need for effective therapeutics that would provide benefit to these patients. Here we present the preclinical development of SENTI-101, a cell preparation of bone marrow-derived mesenchymal stromal (also known as stem) cells (MSC), which are engineered to express two potent immune-modulatory cytokines, IL12 and IL21. Intraperitoneal administration of SENTI-101 results in selective tumor-homing and localized and sustained cytokine production in murine models of peritoneal cancer. SENTI-101 has extended half-life, reduced systemic distribution, and improved antitumor activity when compared with recombinant cytokines, suggesting that it is more effective and has lower risk of systemic immunotoxicities. Treatment of tumor-bearing immune-competent mice with a murine surrogate of SENTI-101 (mSENTI-101) results in a potent and localized immune response consistent with increased number and activation of antigen presenting cells, T cells and B cells, which leads to antitumor response and memory-induced long-term immunity. Consistent with this mechanism of action, co-administration of mSENTI-101 with checkpoint inhibitors leads to synergistic improvement in antitumor response. Collectively, these data warrant potential clinical development of SENTI-101 for patients with peritoneal carcinomatosis and high-grade ovarian cancer.Graphical abstract: SENTI-101 schematic and mechanism of actionSENTI-101 is a novel cell-based immunotherapeutic consisting of bone marrow-derived mesenchymal stromal cells (BM-MSC) engineered to express IL12 and IL21 intended for the treatment of peritoneal carcinomatosis including high-grade serous ovarian cancer. Upon intraperitoneal administration, SENTI-101 homes to peritoneal solid tumors and secretes IL12 and IL21 in a localized and sustained fashion. The expression of these two potent cytokines drives tumor infiltration and engagement of multiple components of the immune system: antigen-presenting cells, T cells, and B cells, resulting in durable antitumor immunity in preclinical models of cancer.


Asunto(s)
Interleucina-12/metabolismo , Interleucinas/metabolismo , Melanoma Experimental/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Neoplasias/inmunología , Neoplasias Peritoneales/inmunología , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/terapia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Stem Cell Res Ther ; 9(1): 268, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30352620

RESUMEN

BACKGROUND: Efficient and sustained hematopoietic recovery after hematopoietic stem cell or bone marrow transplantation is supported by paracrine signaling from specific subpopulations of mesenchymal stromal cells (MSCs). Here, we considered whether in vitro mechanopriming of human MSCs could be administered to predictively and significantly improve in vivo hematopoietic recovery after irradiation injury. METHODS: First, we implemented regression modeling to identify eight MSC-secreted proteins that correlated strongly with improved rescue from radiation damage, including hematopoietic recovery, in a murine model of hematopoietic failure. Using these partial least squares regression (PLSR) model parameters, we then predicted recovery potential of MSC populations that were culture expanded on substrata of varying mechanical stiffness. Lastly, we experimentally validated these predictions using an in vitro co-culture model of hematopoiesis and using new in vivo experiments for the same irradiation injury model used to generate survival predictions. RESULTS: MSCs grown on the least stiff (elastic moduli ~ 1 kPa) of these polydimethylsiloxane (PDMS) substrata secreted high concentrations of key proteins identified in regression modeling, at concentrations comparable to those secreted by minor subpopulations of MSCs shown previously to be effective in supporting such radiation rescue. We confirmed that these MSCs expanded on PDMS could promote hematopoiesis in an in vitro co-culture model with hematopoietic stem and progenitor cells (HSPCs). Further, MSCs cultured on PDMS of highest stiffness (elastic moduli ~ 100 kPa) promoted expression of CD123+ HSPCs, indicative of myeloid differentiation. Systemic administration of mechanoprimed MSCs resulted in improved mouse survival and weight recovery after bone marrow ablation, as compared with both standard MSC expansion on stiffer materials and with biophysically sorted MSC subpopulations. Additionally, we observed recovery of white blood cells, platelets, and red blood cells, indicative of complete recovery of all hematopoietic lineages. CONCLUSIONS: These results demonstrate that computational techniques to identify MSC biomarkers can be leveraged to predict and engineer therapeutically effective MSC phenotypes defined by mechanoprimed secreted factors, for translational applications including hematopoietic recovery.


Asunto(s)
Dimetilpolisiloxanos/farmacología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de la radiación , Mecanotransducción Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de la radiación , Animales , Biomarcadores/metabolismo , Fenómenos Biomecánicos , Plaquetas/citología , Plaquetas/fisiología , Diferenciación Celular , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Dimetilpolisiloxanos/química , Módulo de Elasticidad , Eritrocitos/citología , Eritrocitos/fisiología , Rayos gamma , Expresión Génica , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leucocitos/citología , Leucocitos/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Análisis de Regresión , Análisis de Supervivencia , Andamios del Tejido , Irradiación Corporal Total
3.
ACS Biomater Sci Eng ; 3(12): 3292-3306, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33445371

RESUMEN

Human mesenchymal stem cells (MSCs) exhibit morphological and phenotypic changes that correlate with mechanical cues presented by the substratum material to which those cells adhere. Such mechanosensitivity has been explored in vitro to promote differentiation of MSCs along tissue cell lineages for direct tissue repair. However, MSCs are increasingly understood to facilitate indirect tissue repair in vivo through paracrine signaling via secreted biomolecules. Here we leveraged cell-material interactions in vitro to induce human bone marrow-derived MSCs to preferentially secrete factors that are beneficial to hematopoietic cell proliferation. Specifically, we varied the viscoelastic properties of cell-culture-compatible polydimethylsiloxane (PDMS) substrata to demonstrate modulated MSC expression of biomolecules, including osteopontin, a secreted phosphoprotein implicated in tissue repair and regeneration. We observed an approximately 3-fold increase in expression of osteopontin for MSCs on PDMS substrata of lowest stiffness (elastic moduli <1 kPa) and highest ratio of loss modulus to storage modulus (tan(δ) > 1). A specific subpopulation of these cells, shown previously to express increased osteopontin in vitro and to promote bone marrow recovery in vivo, also exhibited up to a 5-fold increase in osteopontin expression when grown on compliant PDMS relative to heterogeneous MSCs on polystyrene. Importantly, this mechanically modulated increase in protein expression preceded detectable changes in the terminal differentiation capacity of MSCs. In coculture with human CD34+ hematopoietic stem and progenitor cells (HSPCs) that repopulate the blood cell lineages, these mechanically modulated MSCs promoted in vitro proliferation of HSPCs without altering the multipotency for either myeloid or lymphoid lineages. Cytokine and protein expression by human MSCs can thus be manipulated directly by mechanical cues conferred by the material substrata prior to and instead of tissue lineage differentiation. This approach enables enhanced in vitro production of both mesenchymal and hematopoietic stem and progenitor cells that aid regenerative clinical applications.

4.
ACS Nano ; 6(11): 9887-99, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23046098

RESUMEN

The widespread use of silver nanoparticles (Ag-NPs) in consumer and medical products provides strong motivation for a careful assessment of their environmental and human health risks. Recent studies have shown that Ag-NPs released to the natural environment undergo profound chemical transformations that can affect silver bioavailability, toxicity, and risk. Less is known about Ag-NP chemical transformations in biological systems, though the medical literature clearly reports that chronic silver ingestion produces argyrial deposits consisting of silver-, sulfur-, and selenium-containing particulate phases. Here we show that Ag-NPs undergo a rich set of biochemical transformations, including accelerated oxidative dissolution in gastric acid, thiol binding and exchange, photoreduction of thiol- or protein-bound silver to secondary zerovalent Ag-NPs, and rapid reactions between silver surfaces and reduced selenium species. Selenide is also observed to rapidly exchange with sulfide in preformed Ag(2)S solid phases. The combined results allow us to propose a conceptual model for Ag-NP transformation pathways in the human body. In this model, argyrial silver deposits are not translocated engineered Ag-NPs, but rather secondary particles formed by partial dissolution in the GI tract followed by ion uptake, systemic circulation as organo-Ag complexes, and immobilization as zerovalent Ag-NPs by photoreduction in light-affected skin regions. The secondary Ag-NPs then undergo detoxifying transformations into sulfides and further into selenides or Se/S mixed phases through exchange reactions. The formation of secondary particles in biological environments implies that Ag-NPs are not only a product of industrial nanotechnology but also have long been present in the human body following exposure to more traditional chemical forms of silver.


Asunto(s)
Mucosa Gástrica/metabolismo , Nanopartículas del Metal/química , Modelos Biológicos , Plata/química , Plata/metabolismo , Estómago/química , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA