Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(12): 1546-1562, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38240334

RESUMEN

Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.

2.
Chem Commun (Camb) ; 59(70): 10540-10543, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37566103

RESUMEN

A facile protocol for the preparation of indole-isoindole derivatives was developed and proceeds via a palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. In this transformation, the palladium catalyst has a triple role, serving simultaneously as a π acid, a transition-metal catalyst and a hydride ion donor, thus enabling the dual function of isocyanide both as a C1 synthon for cyanation and a C1N1 synthon for imidoylation. Significantly, the reaction is the sole successful example for accessing indole-isoindole derivatives, and will open up new avenues to assemble unique N-heterocycle frameworks. Furthermore, the synthetic value of this protocol is demonstrated in the late-stage modification of physiologically active molecules and in the construction of aggregation-induced emission compounds.

3.
Org Lett ; 25(34): 6272-6277, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607048

RESUMEN

An unprecedented route for the preparation of fused tetracyclic N-heterocycles is presented through the palladium-catalyzed cyclization of isocyanides with alkyne-tethered aryl iodides. In this transformation, a novel amino-to-alkyl 1,5-palladium migration/intramolecular C(sp3)-C(sp2) coupling sequence was observed first. More importantly, isocyanide exhibited three roles, serving simultaneously as a C1 synthon, a C1N1 synthon, and the donor of C(sp3) for C(sp3)-C(sp2) coupling, and the reaction was the sole successful example that achieved C(sp3)-H activation of isocyanide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA