Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Digit Health ; 10: 20552076241269450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165387

RESUMEN

Objective: Aortic dissection (AD) is a severe emergency with high morbidity and mortality, necessitating strict monitoring and management. This retrospective study aimed to identify prognostic factors and establish predictive models for in-hospital mortality among AD patients in the intensive care unit (ICU). Methods: We retrieved ICU admission records of AD patients from the Medical Information Mart for Intensive Care (MIMIC)-IV critical care data set and the eICU Collaborative Research Database. Functional data analysis was further applied to estimate continuous vital sign processes, and variables associated with in-hospital mortality were identified through univariate analyses. Subsequently, we employed multivariable logistic regression and machine learning techniques, including simple decision tree, random forest (RF), and eXtreme Gradient Boosting (XGBoost) to develop prognostic models for in-hospital mortality. Results: Given 643 ICU admissions from MIMIC-IV and 501 admissions from eICU, 29 and 28 prognostic factors were identified from each database through univariate analyses, respectively. For prognostic model construction, 507 MIMIC-IV admissions were divided into 406 (80%) for training and 101 (20%) for internal validation, and 87 eICU admissions were included as an external validation group. Of the four models tested, the RF consistently exhibited the best performance among different variable subsets, boasting area under the receiver operating characteristic curves of 0.870 and 0.850. The models highlighted the mean 24-h fluid intake as the most potent prognostic factor. Conclusions: The current prognostic models effectively forecasted in-hospital mortality among AD patients, and they pinpointed noteworthy prognostic factors, including initial blood pressure upon ICU admission and mean 24-h fluid intake.

2.
J Med Chem ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151120

RESUMEN

Interleukin-1 receptor associated kinase 4 (IRAK4) is an essential mediator of the IL-1R and TLR signaling pathways, both of which have been implicated in multiple autoimmune conditions. Hence, blocking the activity of IRAK4 represents an attractive approach for the treatment of autoimmune diseases. The activity of this serine/threonine kinase is dependent on its kinase and scaffolding activities; thus, degradation represents a potentially superior approach to inhibition. Herein, we detail the exploration of structure-activity relationships that ultimately led to the identification of KT-474, a potent, selective, and orally bioavailable heterobifunctional IRAK4 degrader. This represents the first heterobifunctional degrader evaluated in a nononcology indication and dosed to healthy human volunteers. This molecule successfully completed phase I studies in healthy adult volunteers and patients with atopic dermatitis or hidradenitis suppurativa. Phase II clinical trials in both of these indications have been initiated.

3.
Crit Rev Biotechnol ; : 1-15, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161061

RESUMEN

The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca2+ signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of Aureobasidium pullulans var. aubasidani in the presence of CaCO3. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized via OUC by the engineered strains of Aureobasidum melanogenum. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of A. melanogenum. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, Aureobasidium spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.


OUC in fungal cells has biotechnological importance and many physiological functions; OUC is closely related to acetyl glutamate cycle (AGC). Fumarate, L-Orn, siderophore, putrescine and L-Piz produced from OUC have many applications.

4.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125858

RESUMEN

The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.


Asunto(s)
Cucurbitaceae , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Raíces de Plantas , Factores de Transcripción , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/crecimiento & desarrollo , Cucurbitaceae/metabolismo , Cucurbitaceae/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo , Frío
5.
Small ; : e2403420, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136202

RESUMEN

Precisely controlling the directional motion trajectories of droplets on anisotropic 3D functional surfaces has great application potential in self-cleaning, drug delivery, and droplet power generation, but it also faces huge challenges. Herein, inspired by the microcone structure in the heart of sunflowers, a nanoneedle-modified microcone array surface (NMAS) is reported. The surface is created using a combination of nanosecond laser direct engraving and electroforming and is subsequently fluorinated. Through programmable control of the laser spot, the geometric parameters and inclination angle of the microcone can be quickly and finely adjusted, thereby achieving precise control of the droplet bouncing trajectory. The results show that droplets can achieve programmable multiple bouncing behaviors on patterned functional surfaces, including gravity-defying hopping and directional water transport. It is worth noting that this functional surface has delayed freezing and anti-freezing effects. Furthermore, this functional surface has a wide range of potential applications, including surface self-cleaning, droplet capture, and droplet-based chemical microreactions, especially in the field of anti-icing operations. This opens up a new way for the directional transport of droplets on biomimetic functional surfaces.

6.
Chem Commun (Camb) ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145466

RESUMEN

A durable and efficient hydrophobic/superoleophilic MIL-88A(Fe)@sponge (MS) with high throughput was fabricated via the dip-coating technique. Its adsorption capacities for pump oil, peanut oil, and CCl4 were 32.13 g g-1, 34.85 g g-1, and 34.25 g g-1, respectively. The hydrophobic surface of MS has excellent chemical resistance and physical stability in harsh environments.

7.
J Agric Food Chem ; 72(32): 18181-18191, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087403

RESUMEN

Tropomyosin (TM) is the main allergen in shrimp (Litopenaeus vannamei). In this study, the effects of allergenicity and structure of TM by glycosylation (GOS-TM), phosphate treatment (SP-TM), and glycosylation combined with phosphate treatment (GOS-SP-TM) were investigated. Compared to GOS-TM and SP-TM, the IgG/IgE binding capacity of GOS-SP-TM was significantly decreased with 63.9 ± 2.0 and 49.7 ± 2.7%, respectively. Meanwhile, the α-helix content reduced, surface hydrophobicity increased, and 10 specific amino acids (K30, K38, S39, K48, K66, K74, K128, K161, S210, and K251) were modified by glycosylation on six IgE linear epitopes of GOS-SP-TM. In the BALB/c mice allergy model, GOS-SP-TM could significantly reduce the levels of specific IgE, IgG1, and CD4+IL-4+, while the levels of IgG2a, CD4+CD25+Foxp3+, and CD4+IFN-γ+ were increased, which equilibrated Th1 and Th2 cells, thus alleviating allergic symptoms. These results indicated that glycosylation combined with phosphate treatment can provide a new insight into developing hypoallergenic shrimp food.


Asunto(s)
Alérgenos , Inmunoglobulina E , Penaeidae , Fosfatos , Tropomiosina , Animales , Femenino , Humanos , Ratones , Alérgenos/inmunología , Alérgenos/química , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Hipersensibilidad a los Alimentos/inmunología , Glicosilación , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/química , Ratones Endogámicos BALB C , Penaeidae/inmunología , Penaeidae/química , Fosfatos/química , Mariscos/análisis , Hipersensibilidad a los Mariscos/inmunología , Células Th2/inmunología , Células Th2/efectos de los fármacos , Tropomiosina/inmunología , Tropomiosina/química
8.
J Pharm Biomed Anal ; 248: 116288, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981330

RESUMEN

Germacrone and curdione are germacrane-type sesquiterpenoids that are widely distributed and have extensive pharmacological activities; they are the main constituents of 'Xing-Nao-Jing Injection' (XNJ). Studies on the metabolic features of germacrane-type sesquiterpenoids are limited. In this study, the metabolites of germacrone and curdione were characterized by UHPLC-Q-Exactive Oribitrap mass spectrometry after they were orally administered to rats. In total, 60 and 76 metabolites were found and preliminarily identified in rats administered germacrone and curdione, respectively, among which at least 123 potential new compounds were included. New metabolic reactions of germacrane-type sesquiterpenoids were identified, which included oxidation (+4 O and +5 O), ethylation, methyl-sulfinylation, vitamin C conjugation, and cysteine conjugation reactions. Among the 136 metabolites (including 113 oxidation metabolites, two glucuronidation, two methylation, nine methyl-sulfinylation, three ethylation, six cysteine conjugation, and one Vitamin C conjugation metabolites), 32 metabolites were detected in nine organs, and the stomach, intestine, liver, kidneys, and small intestine were the main organs for the distribution of these metabolites. All 136 metabolites were detected in urine and 64 of them were found in feces. The results of this study not only contribute to research on in vivo processes related to germacrane-type sesquiterpenoids but also provide a strong foundation for a better understanding of in vivo processes and the effective forms of germacrone, curdione, and XNJ.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Sesquiterpenos de Germacrano , Animales , Sesquiterpenos de Germacrano/metabolismo , Ratas , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Cromatografía Líquida de Alta Presión/métodos , Distribución Tisular , Administración Oral , Heces/química
9.
Food Chem ; 458: 140302, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38968706

RESUMEN

Texture-modified, multi-nutrient composite foods are essential in clinical treatment for dysphagia individuals. Herein, fibrous whey protein-stabilized emulsion and different crystalline starches (wheat, corn, rice, potato, sweet potato, cassava, mung bean and pea) were used to structure composite emulsion gels (CEGs). These CEGs then underwent 3D printing to explore the feasibility of developing a dysphagia diet. The network of molded CEGs was mainly maintained by hydrophobic interactions and hydrogen bonds. Rice and cassava starches were better suited for structuring soft-textured CEGs. Compared with molded CEGs, 3D printing decreased hydrogen bonds and the compactness of the nano-aggregate structure within the gel system, forming a looser gel network and softening the CEGs. Interestingly, these effects were more pronounced for the CEGs with high initial hardness. This study provided new strategy to fabricate CEGs as dysphagia diet using fibrous whey protein and starch, and to design texture-modified foods for patients using 3D printing.

10.
Neural Regen Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993126

RESUMEN

ABSTRACT: The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.

11.
Small ; : e2403984, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004845

RESUMEN

Nanomaterials are widely used in many fields for their unique physical and chemical properties and especially demonstrate irreplaceability in energy storage systems. In this paper, a novel composite of copper sulfide with hypha-like core-shell nano-structure is synthesized by in situ phase inversion method, which serves as high stability negative electrode materials of zinc-ion batteries (ZIBs). The unique structure facilitates efficient electron and ion transport, enhances the kinetics of electrochemical reactions, and effectively suppresses the undesired expansion and decomposition of transition metal compounds. As a result, the half battery exhibits high specific capacity (250.2 mAh g-1 at 0.1 A g-1), reliable rate performance, and cycle stability (98.3 mAh g-1 at 1 A g-1 after 500 cycles). Additionally, when assembled with ZnxMnO2 positive to form a full battery, it demonstrates good cycling capacity at an intermediate current density of 2 A g-1, while maintaining excellent structural stability over 5,000 cycles (61% retention).

12.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063124

RESUMEN

Epinephrine (EP) is a very important chemical transmitter in the transmission of nerve impulses in the central nervous system of mammals. Ascorbic acid (AA) is considered to be the most important extracellular fluid antioxidant and has important antioxidant properties in the cell. In this study, a series of transition metal-polyhistidine-carboxylated multi-wall carbon nanotube nanocomposites were synthesized, and their simultaneous catalytic effects on epinephrine and ascorbic acid were investigated. The results showed that nanocomposites based on iron ions had the highest catalytic activity. The prepared biosensor expressed high selectivity toward EP and AA with LOD values of 0.1 µΜ (AA) and 0.01 µΜ (EP), and sensitivity values of 4.18 µA mM-1 with a range of 0.001-5 mM (AA), 50.98 µA mM-1 with a range of 0.2-100 µM (EP), and 265.75 µA mM-1 with a range of 0.1-1.0 mM (EP). Moreover, it showed good stability, good repeatability and high selectivity in real sample detection. This work is a reference for the design of new electrochemical enzyme-free biosensors and the detection of biomarkers.


Asunto(s)
Ácido Ascórbico , Técnicas Biosensibles , Epinefrina , Histidina , Nanotubos de Carbono , Nanotubos de Carbono/química , Técnicas Biosensibles/métodos , Ácido Ascórbico/química , Epinefrina/análisis , Histidina/química , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Límite de Detección , Compuestos Férricos/química , Hierro/química
13.
ACS Appl Mater Interfaces ; 16(31): 41400-41408, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39069698

RESUMEN

A photo/electrothermal surface can convert sunlight and electricity into heat to solve icing problems. The combination of active photo/electrothermal surfaces with passive slippery surfaces provides a highly efficient strategy for all-day anti/deicing. However, the lack of transparency remains a primary impediment to the widespread application of these anti-icing measures in photovoltaics, windshields, and other fields. Herein, we report a bilayer transparent photo/electrothermal coating with a liquid-like slippery property for all-day anti/deicing. The prepared coating exhibits ultraslippery, low ice adhesion, and enhanced stability properties through covalent grafting of polydimethylsiloxane (PDMS) brushes in a cross-linked skeleton of epoxy. Moreover, the coating demonstrates a visible transmittance of up to 77% and effectively absorbs ultraviolet and near-infrared light due to the addition of ultraviolet and infrared absorbers, resulting in a temperature increase under sun illumination. The bottom indium tin oxide layer is fabricated to provide the composite coating with electrothermal capability, so that it can achieve all-weather deicing. The coupling of photo/electrothermal and slippery properties can promote the rapid removal of grown ice in a short time. The slippery properties and their exceptional durability under mechanical, optical, and thermal conditions render the composite coatings highly promising for engineering applications.

14.
Sci China Life Sci ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39034350

RESUMEN

This study investigated the ethical landscape of aging research amid the increasing global focus on extending the human lifespan and health span. Our global survey of 180 researchers across 38 jurisdictions revealed divergent perceptions of aging, a consensus regarding the feasibility of delaying aging, and multiple perspectives regarding lifespan extension. The present findings underscore a paradigm shift toward inclusive and ethically sound research, emphasizing the need for an approach that strikes a balance between basic and clinical research. In addition, this study highlighted key ethical concerns in aging research, including the effects of misleading advertising, potential inequality in access to aging interventions, and risks pertaining to the extrapolation of research findings from lower-model organisms to humans. The insights presented in this paper call for an integrated approach for overcoming the complex ethical and societal challenges in aging research to ensure responsible and equitable advancements in this burgeoning field.

15.
Zool Res ; 45(4): 937-950, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021082

RESUMEN

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Células-Madre Neurales , Animales , Células-Madre Neurales/fisiología , Células-Madre Neurales/metabolismo , Ratones , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Noqueados , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Regulación de la Expresión Génica , Proteínas de Neoplasias
16.
Animals (Basel) ; 14(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39061555

RESUMEN

We aimed to estimate the non-phytate phosphorus (NPP) requirements of Chinese Jing Tint 6 layer chicks. We randomly allocated 720 birds to five treatments with six cages of 24 birds each, feeding them a corn-soybean diet containing 0.36%, 0.41%, 0.46%, 0.51%, and 0.56% NNP. The results showed that the body weight gain (BWG), tibial length, and apparent total tract digestibility coefficients (ATTDC) of P were affected (p < 0.05) by dietary NPP level. A quadratic broken-line analysis (p < 0.05) of BWG indicated that the optimal NPP for birds aged 1-14 d was 0.411%. Similarly, 0.409% of NPP met tibial growth needs. However, 0.394% of NPP was optimal for P utilization according to the ATTDC criterion. For 15-42 d birds, 0.466% NPP, as estimated by the BWG criterion, was sufficient for optimal growth without decreasing P utilization. Using the factorial method, NPP requirements were calculated as 0.367% and 0.439%, based on the maintenance factors and BWG for 1-14 and 15-42 d birds, respectively, to maintain normal growth. Combining the non-linear model with the factorial method, this study recommends dietary NPP levels of 0.367% and 0.439% for 1-14 and 15-42 d birds, respectively, to optimize P utilization without affecting performance.

17.
Small ; : e2405080, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073300

RESUMEN

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

18.
J Pain Res ; 17: 2455-2471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081327

RESUMEN

Objective: This study aimed to investigate the features and underlying principles of acupuncture points used in the treatment of headaches associated with blood stasis syndrome. Methods: Literature on the treatment of blood stasis headache with acupuncture and moxibustion was searched across three Chinese databases and one English database from January 1st, 2000, to January 1st, 2024. Relevant data including titles, journals, authors, keywords, interventions, main acupoints, and outcomes were extracted for further analysis. Results: A total of 112 papers with 102 complete prescriptions were analyzed. Of the 77 acupoints examined, 72 were meridian points, and 5 were extraordinary points, used 699 times in total. The top ten acupoints by frequency were Fengchi (GB20), Taiyang (EX-HN5), Baihui (GV20), Hegu (LI4), Shuaigu (GB8), Taichong (LR3), Xuehai (SP10), Touwei (ST8), Geshu (BL17), and Waiguan (TE5). Yang meridian points were used more frequently than Yin meridian points (82.8% vs 17.2%), with the Gallbladder Meridian of Foot Shaoyang being the most common. Nearly half of the acupoints (49.9%) were on the head and neck, and 23.1% on the lower limbs. Specific acupoints accounted for 53.5% of the total frequency. Fengchi (GB20) and Taiyang (EX-HN5) showed the highest correlation. Association rule mining highlighted combinations like Fengchi (GB20) with Taiyang (EX-HN5) and Baihui (GV20). Cluster analysis yielded five clusters. Conclusion: The study provides insights into selecting effective acupoints and combinations for clinical acupuncture practice and experimental studies in treating blood stasis headaches. Acupoints like Fengchi (GB20), Taiyang (EX-HN5), and Baihui (GV20) may be effective for clinical treatment, but further studies are needed to validate their efficacy.

19.
Nano Lett ; 24(30): 9337-9344, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39038175

RESUMEN

Localized surface plasmon resonances (LSPRs) can enhance the electromagnetic fields on metallic nanostructures upon light illumination, providing an approach for manipulating light-matter interactions at the sub-wavelength scale. However, currently, there is no thorough investigation of the physical mechanism in the dynamic formation of the strongly coupled LSPRs on sub-5 nm plasmonic cavities at the sub-picosecond scale. In this work, through femtosecond broadband transient absorption spectroscopy, we reveal the dynamic ultrastrong coupling processes in a nanoparticle-in-trench (NPiT) structure containing 2 nm gap cavities, and demonstrate a coherent motional coupling between vibrating AuNPs and the nanogaps. We achieve a maximum Rabi splitting energy of ∼660 meV in the sub-picosecond hot-electron relaxation time scale under the resonant excitation of the nanogap cavity's LSPR, reaching the ultrastrong coupling regime. This leads to a change of global vibration modes for the 2 nm gap cavity, potentially related to the dynamical Casimir effect with nanogap resonators.

20.
Discov Med ; 36(186): 1345-1353, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054705

RESUMEN

Lactylation plays an important regulatory role in neural development, neural stem cell fate determination, and the physiological function of the nervous system. Abnormal lactylation is closely related to the occurrence and development of hippocampal microglial inflammation in post-traumatic stress disorder (PTSD), so lactylation may serve as a potential therapeutic target for PTSD. This article reviewed the latest research progress on the involvement of lactylation in hippocampal microglial inflammation and its molecular mechanisms in PTSD.


Asunto(s)
Inflamación , Microglía , Trastornos por Estrés Postraumático , Humanos , Microglía/metabolismo , Microglía/patología , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/patología , Trastornos por Estrés Postraumático/inmunología , Inflamación/metabolismo , Inflamación/patología , Animales , Hipocampo/metabolismo , Hipocampo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA