Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell Rep ; 43(9): 114721, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39255061

RESUMEN

Advancing age is a negative prognostic factor for cutaneous melanoma. However, the role of extracellular vesicles (EVs) within the melanoma tumor microenvironment (TME) has remained unexplored in the context of aging. While the size and morphology of the EVs isolated from young vs. aged fibroblasts remained unaltered, the contents of the protein cargo were changed. Aging reduced the expression of the tetraspanin CD9 in both the dermal fibroblasts and released EVs. CD9 is a crucial regulator of EV cargo sorting. Modulating the CD9 expression in fibroblasts was sufficient to alter its levels in EVs. Mass spectrometry analysis of EVs released by CD9 knockdown (KD) vs. control cells revealed a significant increase in angiopoietin-like protein 2 (ANGPTL2), an angiogenesis promoter. Analysis of primary endothelial cells confirmed increased sprouting under CD9 KD conditions. Together, our data indicate that aged EVs play an important role in promoting a tumor-permissive microenvironment.


Asunto(s)
Vesículas Extracelulares , Fibroblastos , Melanoma , Neovascularización Patológica , Tetraspanina 29 , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Melanoma/patología , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Animales , Angiogénesis
2.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38748853

RESUMEN

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Asunto(s)
Amidas , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Amidas/química , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen Eco-Planar/métodos , Glioma/diagnóstico por imagen , Algoritmos , Relación Señal-Ruido , Neoplasias Encefálicas/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Femenino , Guanidina/química
3.
Eur Radiol ; 34(9): 5678-5690, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38421414

RESUMEN

OBJECTIVES: We aimed to explore imaging features including tissue characterization and myocardial deformation in diabetic heart failure with preserved ejection fraction (HFpEF) patients by magnetic resonance imaging (MRI) and investigate its prognostic value for adverse outcomes. MATERIALS AND METHODS: Patients with HFpEF who underwent cardiac MRI between January 2010 and December 2016 were enrolled. Feature-tracking (FT) analysis and myocardial fibrosis were assessed by cardiac MRI. Cox proportional regression analysis was performed to determine the association between MRI variables and primary outcomes. Primary outcomes were all-cause death or heart failure hospitalization during the follow-up period. RESULTS: Of the 335 enrolled patients with HFpEF, 191 had diabetes mellitus (DM) (mean age: 58.7 years ± 10.8; 137 men). During a median follow-up of 10.2 years, 91 diabetic HFpEF and 56 non-diabetic HFpEF patients experienced primary outcomes. DM was a significant predictor of worse prognosis in HFpEF. In diabetic HFpEF, the addition of conventional imaging variables (left ventricular ejection fraction, left atrial volume index, extent of late gadolinium enhancement (LGE)) and global longitudinal strain (GLS) resulted in a significant increase in the area under the receiver operating characteristic curve (from 0.693 to 0.760, p < 0.05). After adjustment for multiple clinical and imaging variables, each 1% worsening in GLS was associated with a 9.8% increased risk of adverse events (p = 0.004). CONCLUSIONS: Diabetic HFpEF is characterized by more severely impaired strains and myocardial fibrosis, which is identified as a high-risk HFpEF phenotype. In diabetic HFpEF, comprehensive cardiac MRI provides incremental value in predicting prognosis. Particularly, MRI-FT measurement of GLS is an independent predictor of adverse outcome in diabetic HFpEF. CLINICAL RELEVANCE STATEMENT: Our findings suggested that MRI-derived variables, especially global longitudinal strain, played a crucial role in risk stratification and predicting worse prognosis in diabetic heart failure with preserved ejection fraction, which could assist in identifying high-risk patients and guiding therapeutic decision-making. KEY POINTS: • Limited data are available on the cardiac MRI features of diabetic heart failure with preserved ejection fraction, including myocardial deformation and tissue characterization, as well as their incremental prognostic value. • Diabetic heart failure with preserved ejection fraction patients was characterized by more impaired strains and myocardial fibrosis. Comprehensive MRI, including tissue characterization and global longitudinal strain, provided incremental value for risk prediction. • MRI served as a valuable tool for identifying high-risk patients and guiding clinical management in diabetic heart failure with preserved ejection fraction.


Asunto(s)
Insuficiencia Cardíaca , Imagen por Resonancia Magnética , Volumen Sistólico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/complicaciones , Pronóstico , Imagen por Resonancia Magnética/métodos , Anciano , Estudios Retrospectivos , Complicaciones de la Diabetes/diagnóstico por imagen
4.
Neurobiol Dis ; 190: 106372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061397

RESUMEN

Gait disturbance is a manifestation of cerebral small vessel disease (CSVD). The posterolateral thalamus (PL), whose blood is mainly supplied by the P2 segment of posterior cerebral artery (P2-PCA), plays pivotal roles in gait regulation. We investigated the influence of the distance between P2-PCA and PL on gait with varying CSVD burden. 71 participants were divided into low and high CSVD burden groups. The distance from P2-PCA to PL was measured using 7 T TOF-MRA and categorized into an immediate or distant PCA-to-thalamus pattern. Functional connectivity (FC) and voxel-based morphometry were assessed to evaluate functional and structural alterations. In the low CSVD burden group, immediate PCA-to-thalamus supply strongly correlates with longer step length and higher wave phase time percent, and exhibited enhanced FCs in left supplementary motor area, right precentral cortex (PreCG.R). While in the high CSVD burden group, no association between PCA-to-thalamus pattern and gait was found, and we observed reduced FC in PreCG.R with immediate PCA-to-thalamus pattern. Higher CSVD burden was associated with decreased gray matter density in bilateral thalamus. However, no significant structural thalamic change was observed between the two types of PCA-to-thalamus patterns in all patients. Our study demonstrated patients with immediate PCA-to-thalamus supply exhibited better gait performance in low CSVD burden populations, which also correlated with enhanced FCs in motor-related cortex, indicating the beneficial effects of the immediate PCA-to-thalamus supply pattern. In the higher burden CSVD populations, the effects of PCA-to-thalamus pattern on gait are void, attributable to the CSVD-related thalamic destruction and impairment of thalamus-related FC.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Arteria Cerebral Posterior , Humanos , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Sustancia Gris , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen
5.
Eur Radiol ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37950081

RESUMEN

OBJECTIVES: To explore individual weight of cardiac magnetic resonance (CMR) metrics to predict mid-term outcomes in patients with dilated cardiomyopathy (DCM), and develop a risk algorithm for mid-term outcome based on CMR biomarkers. MATERIALS AND METHODS: Patients with DCM who underwent CMR imaging were prospectively enrolled in this study. The primary endpoint was a composite of heart failure (HF) death, sudden cardiac death (SCD), aborted SCD, and heart transplantation. RESULTS: A total of 407 patients (age 48.1 ± 13.8 years, 331 men) were included in the final analysis. During a median follow-up of 21.7 months, 63 patients reached the primary endpoint. NYHA class III/IV (HR = 2.347 [1.073-5.133], p = 0.033), left ventricular ejection fraction (HR = 0.940 [0.909-0.973], p < 0.001), late gadolinium enhancement (LGE) > 0.9% and ≤ 6.6% (HR = 3.559 [1.020-12.412], p = 0.046), LGE > 6.6% (HR = 6.028 [1.814-20.038], p = 0.003), and mean extracellular volume (ECV) fraction ≥ 32.8% (HR = 5.922 [2.566-13.665], p < 0.001) had a significant prognostic association with the primary endpoints (C-statistic: 0.853 [0.810-0.896]). Competing risk regression analyses showed that patients with mean ECV fraction ≥ 32.8%, LGE ≥ 5.9%, global circumferential strain ≥ - 5.6%, or global longitudinal strain ≥ - 7.3% had significantly shorter event-free survival due to HF death and heart transplantation. Patients with mean ECV fraction ≥ 32.8% and LGE ≥ 5.9% had significantly shorter event-free survival due to SCD or aborted SCD. CONCLUSION: ECV fraction may be the best independently risk factor for the mid-term outcomes in patients with DCM, surpassing LVEF and LGE. LGE has a better prognostic value than other CMR metrics for SCD and aborted SCD. The risk stratification model we developed may be a promising non-invasive tool for decision-making and prognosis. CLINICAL RELEVANCE STATEMENT: "One-stop" assessment of cardiac function and myocardial characterization using cardiac magnetic resonance might improve risk stratification of patients with DCM. In this prospective study, we propose a novel risk algorithm in DCM including NYHA functional class, LVEF, LGE, and ECV. KEY POINTS: • The present study explores individual weight of CMR metrics for predicting mid-term outcomes in dilated cardiomyopathy. • We have developed a novel risk algorithm for dilated cardiomyopathy that includes cardiac functional class, ejection fraction, late gadolinium enhancement, and extracellular volume fraction. • Personalized risk model derived by CMR contributes to clinical assessment and individual decision-making.

6.
Cancer Med ; 12(22): 20798-20809, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37902220

RESUMEN

BACKGROUND: Early skeletal muscle loss has been observed in adolescent and young adult (AYA) sarcoma patients undergoing treatment. Identification of individuals within the AYA populace that are at greatest risk of anthracycline-induced skeletal muscle loss is unknown. Moreover, investigations which seek out underlying causes of skeletal muscle degradation during chemotherapy are critical for understanding, preventing, and reducing chronic health conditions associated with poor skeletal muscle status. METHODS: Computed tomography (CT) scans were used to investigate changes in skeletal muscle of 153 AYA sarcoma and Hodgkin lymphoma patients at thoracic vertebra 4 after anthracycline treatment. Images were examined at three time points during the first year of treatment. In parallel, we used translational juvenile mouse models to assess the impact of doxorubicin (DOX) in the soleus and gastrocnemius on muscle wasting. RESULTS: Significant reductions in total skeletal muscle index and density were seen after chemotherapy in AYA cancer patients (p < 0.01 & p = 0.04, respectively). The severity of skeletal muscle loss varied by subgroup (i.e., cancer type, sex, and treatment). Murine models demonstrated a reduction in skeletal muscle fiber cross-sectional area, increased apoptosis and collagen volume for both the soleus and gastrocnemius after DOX treatment (all p < 0.05). After DOX, hindlimb skeletal muscle blood flow was significantly reduced (p < 0.01). CONCLUSION: Significant skeletal muscle loss is experienced early during treatment in AYA cancer patients. Reductions in skeletal muscle blood flow may be a key contributing factor to anthracycline doxorubicin induced skeletal muscle loss.


Asunto(s)
Enfermedad de Hodgkin , Sarcoma , Humanos , Adolescente , Adulto Joven , Ratones , Animales , Antraciclinas/efectos adversos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Antibióticos Antineoplásicos/efectos adversos , Doxorrubicina , Enfermedad de Hodgkin/inducido químicamente , Sarcoma/metabolismo
7.
Extracell Vesicles Circ Nucl Acids ; 4(1): 107-132, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37829171

RESUMEN

Extracellular vesicles (EVs), or exosomes, are naturally occurring nano- and micro-sized membrane vesicles playing an essential role in cell-to-cell communication. There is a recent increasing interest in harnessing the therapeutic potential of these natural nanoparticles to develop cell-free regenerative medicine and manufacture highly biocompatible and targeted drug and gene delivery vectors, amongst other applications. In the context of developing novel and effective EV-based therapy, imaging tools are of paramount importance as they can be used to not only elucidate the underlying mechanisms but also provide the basis for optimization and clinical translation. In this review, recent efforts and knowledge advances on EV-based therapies have been briefly introduced, followed by an outline of currently available labeling strategies by which EVs can be conjugated with various imaging agents and/or therapeutic drugs and genes. A comprehensive review of prevailing EV imaging technologies is then presented along with examples and applications, with emphasis on imaging probes and agents, corresponding labeling methods, and the pros and cons of each imaging modality. Finally, the potential of theranostic EVs as a powerful new weapon in the arsenal of regenerative medicine and nanomedicine is summarized and envisioned.

8.
Biomaterials ; 301: 122277, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597297

RESUMEN

Intracerebral hemorrhage (ICH) remains the most lethal type of stroke, and effective clinical therapies that can speed up hematoma resolution after ICH are still lacking. While the beneficial effects of IL-10 on ICH recovery have been demonstrated, the clinical translation of IL-10 requires effective delivery methods by which sufficient IL-10 can be delivered to ICH-affected regions in the brain. Here we report the use of a phosphatidylserine (PS) liposome (PSL)-based nanoparticle system for microglia/macrophage-targeted delivery of IL-10 in ICH. We first prepared IL-10-conjugated PSL (PSL-IL10) and characterized their immunomodulating effects in vitro. Then we evaluated the therapeutic effects, including hematoma absorption, short-term outcomes, and neuroinflammation, of intranasally administered PSL-IL10 (3 µg IL-10 per mouse, 2 h post-ICH) in a collagenase-induced ICH mouse model. We also isolated microglia/macrophages from the mouse brains with ICH to analyze their morphology, phagocytosis ability, and polarization. Our study reveals that, 1) PSL-IL10 treatment resulted in significantly improved outcomes and accelerated hematoma resolution in the acute phase of ICH; 2) PSL-IL10 inhibited glial activation and down-regulated pro-inflammatory cytokine production; 3) PSL-IL10 induced Iba1+ cells with a stronger phagocytosis ability; 4) PSL-IL10 activated STAT3 and upregulated CD36 expression in microglia/macrophage. These findings collectively show that PSL-IL10 is a promising nanotherapeutic for effectively ameliorating ICH.


Asunto(s)
Interleucina-10 , Microglía , Animales , Ratones , Fosfatidilserinas , Liposomas , Macrófagos , Hemorragia Cerebral/tratamiento farmacológico , Hematoma
9.
Biosensors (Basel) ; 13(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37185529

RESUMEN

In vivo bioimaging has become an indispensable tool in contemporary biomedical research and medicine [...].


Asunto(s)
Medicina de Precisión , Medicina de Precisión/métodos , Biomarcadores
10.
Chem Biomed Imaging ; 1(2): 121-139, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37235188

RESUMEN

Biomedical imaging, especially molecular imaging, has been a driving force in scientific discovery, technological innovation, and precision medicine in the past two decades. While substantial advances and discoveries in chemical biology have been made to develop molecular imaging probes and tracers, translating these exogenous agents to clinical application in precision medicine is a major challenge. Among the clinically accepted imaging modalities, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) exemplify the most effective and robust biomedical imaging tools. Both MRI and MRS enable a broad range of chemical, biological and clinical applications from determining molecular structures in biochemical analysis to imaging diagnosis and characterization of many diseases and image-guided interventions. Using chemical, biological, and nuclear magnetic resonance properties of specific endogenous metabolites and native MRI contrast-enhancing biomolecules, label-free molecular and cellular imaging with MRI can be achieved in biomedical research and clinical management of patients with various diseases. This review article outlines the chemical and biological bases of several label-free chemically and molecularly selective MRI and MRS methods that have been applied in imaging biomarker discovery, preclinical investigation, and image-guided clinical management. Examples are provided to demonstrate strategies for using endogenous probes to report the molecular, metabolic, physiological, and functional events and processes in living systems, including patients. Future perspectives on label-free molecular MRI and its challenges as well as potential solutions, including the use of rational design and engineered approaches to develop chemical and biological imaging probes to facilitate or combine with label-free molecular MRI, are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA