Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38748853

RESUMEN

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Asunto(s)
Amidas , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Amidas/química , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen Eco-Planar/métodos , Glioma/diagnóstico por imagen , Algoritmos , Relación Señal-Ruido , Neoplasias Encefálicas/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Femenino , Guanidina/química
2.
Eur Radiol ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421414

RESUMEN

OBJECTIVES: We aimed to explore imaging features including tissue characterization and myocardial deformation in diabetic heart failure with preserved ejection fraction (HFpEF) patients by magnetic resonance imaging (MRI) and investigate its prognostic value for adverse outcomes. MATERIALS AND METHODS: Patients with HFpEF who underwent cardiac MRI between January 2010 and December 2016 were enrolled. Feature-tracking (FT) analysis and myocardial fibrosis were assessed by cardiac MRI. Cox proportional regression analysis was performed to determine the association between MRI variables and primary outcomes. Primary outcomes were all-cause death or heart failure hospitalization during the follow-up period. RESULTS: Of the 335 enrolled patients with HFpEF, 191 had diabetes mellitus (DM) (mean age: 58.7 years ± 10.8; 137 men). During a median follow-up of 10.2 years, 91 diabetic HFpEF and 56 non-diabetic HFpEF patients experienced primary outcomes. DM was a significant predictor of worse prognosis in HFpEF. In diabetic HFpEF, the addition of conventional imaging variables (left ventricular ejection fraction, left atrial volume index, extent of late gadolinium enhancement (LGE)) and global longitudinal strain (GLS) resulted in a significant increase in the area under the receiver operating characteristic curve (from 0.693 to 0.760, p < 0.05). After adjustment for multiple clinical and imaging variables, each 1% worsening in GLS was associated with a 9.8% increased risk of adverse events (p = 0.004). CONCLUSIONS: Diabetic HFpEF is characterized by more severely impaired strains and myocardial fibrosis, which is identified as a high-risk HFpEF phenotype. In diabetic HFpEF, comprehensive cardiac MRI provides incremental value in predicting prognosis. Particularly, MRI-FT measurement of GLS is an independent predictor of adverse outcome in diabetic HFpEF. CLINICAL RELEVANCE STATEMENT: Our findings suggested that MRI-derived variables, especially global longitudinal strain, played a crucial role in risk stratification and predicting worse prognosis in diabetic heart failure with preserved ejection fraction, which could assist in identifying high-risk patients and guiding therapeutic decision-making. KEY POINTS: • Limited data are available on the cardiac MRI features of diabetic heart failure with preserved ejection fraction, including myocardial deformation and tissue characterization, as well as their incremental prognostic value. • Diabetic heart failure with preserved ejection fraction patients was characterized by more impaired strains and myocardial fibrosis. Comprehensive MRI, including tissue characterization and global longitudinal strain, provided incremental value for risk prediction. • MRI served as a valuable tool for identifying high-risk patients and guiding clinical management in diabetic heart failure with preserved ejection fraction.

3.
Neurobiol Dis ; 190: 106372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061397

RESUMEN

Gait disturbance is a manifestation of cerebral small vessel disease (CSVD). The posterolateral thalamus (PL), whose blood is mainly supplied by the P2 segment of posterior cerebral artery (P2-PCA), plays pivotal roles in gait regulation. We investigated the influence of the distance between P2-PCA and PL on gait with varying CSVD burden. 71 participants were divided into low and high CSVD burden groups. The distance from P2-PCA to PL was measured using 7 T TOF-MRA and categorized into an immediate or distant PCA-to-thalamus pattern. Functional connectivity (FC) and voxel-based morphometry were assessed to evaluate functional and structural alterations. In the low CSVD burden group, immediate PCA-to-thalamus supply strongly correlates with longer step length and higher wave phase time percent, and exhibited enhanced FCs in left supplementary motor area, right precentral cortex (PreCG.R). While in the high CSVD burden group, no association between PCA-to-thalamus pattern and gait was found, and we observed reduced FC in PreCG.R with immediate PCA-to-thalamus pattern. Higher CSVD burden was associated with decreased gray matter density in bilateral thalamus. However, no significant structural thalamic change was observed between the two types of PCA-to-thalamus patterns in all patients. Our study demonstrated patients with immediate PCA-to-thalamus supply exhibited better gait performance in low CSVD burden populations, which also correlated with enhanced FCs in motor-related cortex, indicating the beneficial effects of the immediate PCA-to-thalamus supply pattern. In the higher burden CSVD populations, the effects of PCA-to-thalamus pattern on gait are void, attributable to the CSVD-related thalamic destruction and impairment of thalamus-related FC.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Arteria Cerebral Posterior , Humanos , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Sustancia Gris , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen
4.
Eur Radiol ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37950081

RESUMEN

OBJECTIVES: To explore individual weight of cardiac magnetic resonance (CMR) metrics to predict mid-term outcomes in patients with dilated cardiomyopathy (DCM), and develop a risk algorithm for mid-term outcome based on CMR biomarkers. MATERIALS AND METHODS: Patients with DCM who underwent CMR imaging were prospectively enrolled in this study. The primary endpoint was a composite of heart failure (HF) death, sudden cardiac death (SCD), aborted SCD, and heart transplantation. RESULTS: A total of 407 patients (age 48.1 ± 13.8 years, 331 men) were included in the final analysis. During a median follow-up of 21.7 months, 63 patients reached the primary endpoint. NYHA class III/IV (HR = 2.347 [1.073-5.133], p = 0.033), left ventricular ejection fraction (HR = 0.940 [0.909-0.973], p < 0.001), late gadolinium enhancement (LGE) > 0.9% and ≤ 6.6% (HR = 3.559 [1.020-12.412], p = 0.046), LGE > 6.6% (HR = 6.028 [1.814-20.038], p = 0.003), and mean extracellular volume (ECV) fraction ≥ 32.8% (HR = 5.922 [2.566-13.665], p < 0.001) had a significant prognostic association with the primary endpoints (C-statistic: 0.853 [0.810-0.896]). Competing risk regression analyses showed that patients with mean ECV fraction ≥ 32.8%, LGE ≥ 5.9%, global circumferential strain ≥ - 5.6%, or global longitudinal strain ≥ - 7.3% had significantly shorter event-free survival due to HF death and heart transplantation. Patients with mean ECV fraction ≥ 32.8% and LGE ≥ 5.9% had significantly shorter event-free survival due to SCD or aborted SCD. CONCLUSION: ECV fraction may be the best independently risk factor for the mid-term outcomes in patients with DCM, surpassing LVEF and LGE. LGE has a better prognostic value than other CMR metrics for SCD and aborted SCD. The risk stratification model we developed may be a promising non-invasive tool for decision-making and prognosis. CLINICAL RELEVANCE STATEMENT: "One-stop" assessment of cardiac function and myocardial characterization using cardiac magnetic resonance might improve risk stratification of patients with DCM. In this prospective study, we propose a novel risk algorithm in DCM including NYHA functional class, LVEF, LGE, and ECV. KEY POINTS: • The present study explores individual weight of CMR metrics for predicting mid-term outcomes in dilated cardiomyopathy. • We have developed a novel risk algorithm for dilated cardiomyopathy that includes cardiac functional class, ejection fraction, late gadolinium enhancement, and extracellular volume fraction. • Personalized risk model derived by CMR contributes to clinical assessment and individual decision-making.

5.
Cancer Med ; 12(22): 20798-20809, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37902220

RESUMEN

BACKGROUND: Early skeletal muscle loss has been observed in adolescent and young adult (AYA) sarcoma patients undergoing treatment. Identification of individuals within the AYA populace that are at greatest risk of anthracycline-induced skeletal muscle loss is unknown. Moreover, investigations which seek out underlying causes of skeletal muscle degradation during chemotherapy are critical for understanding, preventing, and reducing chronic health conditions associated with poor skeletal muscle status. METHODS: Computed tomography (CT) scans were used to investigate changes in skeletal muscle of 153 AYA sarcoma and Hodgkin lymphoma patients at thoracic vertebra 4 after anthracycline treatment. Images were examined at three time points during the first year of treatment. In parallel, we used translational juvenile mouse models to assess the impact of doxorubicin (DOX) in the soleus and gastrocnemius on muscle wasting. RESULTS: Significant reductions in total skeletal muscle index and density were seen after chemotherapy in AYA cancer patients (p < 0.01 & p = 0.04, respectively). The severity of skeletal muscle loss varied by subgroup (i.e., cancer type, sex, and treatment). Murine models demonstrated a reduction in skeletal muscle fiber cross-sectional area, increased apoptosis and collagen volume for both the soleus and gastrocnemius after DOX treatment (all p < 0.05). After DOX, hindlimb skeletal muscle blood flow was significantly reduced (p < 0.01). CONCLUSION: Significant skeletal muscle loss is experienced early during treatment in AYA cancer patients. Reductions in skeletal muscle blood flow may be a key contributing factor to anthracycline doxorubicin induced skeletal muscle loss.


Asunto(s)
Enfermedad de Hodgkin , Sarcoma , Humanos , Adolescente , Adulto Joven , Ratones , Animales , Antraciclinas/efectos adversos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Antibióticos Antineoplásicos/efectos adversos , Doxorrubicina , Enfermedad de Hodgkin/inducido químicamente , Sarcoma/metabolismo
6.
Extracell Vesicles Circ Nucl Acids ; 4(1): 107-132, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37829171

RESUMEN

Extracellular vesicles (EVs), or exosomes, are naturally occurring nano- and micro-sized membrane vesicles playing an essential role in cell-to-cell communication. There is a recent increasing interest in harnessing the therapeutic potential of these natural nanoparticles to develop cell-free regenerative medicine and manufacture highly biocompatible and targeted drug and gene delivery vectors, amongst other applications. In the context of developing novel and effective EV-based therapy, imaging tools are of paramount importance as they can be used to not only elucidate the underlying mechanisms but also provide the basis for optimization and clinical translation. In this review, recent efforts and knowledge advances on EV-based therapies have been briefly introduced, followed by an outline of currently available labeling strategies by which EVs can be conjugated with various imaging agents and/or therapeutic drugs and genes. A comprehensive review of prevailing EV imaging technologies is then presented along with examples and applications, with emphasis on imaging probes and agents, corresponding labeling methods, and the pros and cons of each imaging modality. Finally, the potential of theranostic EVs as a powerful new weapon in the arsenal of regenerative medicine and nanomedicine is summarized and envisioned.

7.
Biomaterials ; 301: 122277, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597297

RESUMEN

Intracerebral hemorrhage (ICH) remains the most lethal type of stroke, and effective clinical therapies that can speed up hematoma resolution after ICH are still lacking. While the beneficial effects of IL-10 on ICH recovery have been demonstrated, the clinical translation of IL-10 requires effective delivery methods by which sufficient IL-10 can be delivered to ICH-affected regions in the brain. Here we report the use of a phosphatidylserine (PS) liposome (PSL)-based nanoparticle system for microglia/macrophage-targeted delivery of IL-10 in ICH. We first prepared IL-10-conjugated PSL (PSL-IL10) and characterized their immunomodulating effects in vitro. Then we evaluated the therapeutic effects, including hematoma absorption, short-term outcomes, and neuroinflammation, of intranasally administered PSL-IL10 (3 µg IL-10 per mouse, 2 h post-ICH) in a collagenase-induced ICH mouse model. We also isolated microglia/macrophages from the mouse brains with ICH to analyze their morphology, phagocytosis ability, and polarization. Our study reveals that, 1) PSL-IL10 treatment resulted in significantly improved outcomes and accelerated hematoma resolution in the acute phase of ICH; 2) PSL-IL10 inhibited glial activation and down-regulated pro-inflammatory cytokine production; 3) PSL-IL10 induced Iba1+ cells with a stronger phagocytosis ability; 4) PSL-IL10 activated STAT3 and upregulated CD36 expression in microglia/macrophage. These findings collectively show that PSL-IL10 is a promising nanotherapeutic for effectively ameliorating ICH.


Asunto(s)
Interleucina-10 , Microglía , Animales , Ratones , Fosfatidilserinas , Liposomas , Macrófagos , Hemorragia Cerebral/tratamiento farmacológico , Hematoma
8.
Chem Biomed Imaging ; 1(2): 121-139, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37235188

RESUMEN

Biomedical imaging, especially molecular imaging, has been a driving force in scientific discovery, technological innovation, and precision medicine in the past two decades. While substantial advances and discoveries in chemical biology have been made to develop molecular imaging probes and tracers, translating these exogenous agents to clinical application in precision medicine is a major challenge. Among the clinically accepted imaging modalities, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) exemplify the most effective and robust biomedical imaging tools. Both MRI and MRS enable a broad range of chemical, biological and clinical applications from determining molecular structures in biochemical analysis to imaging diagnosis and characterization of many diseases and image-guided interventions. Using chemical, biological, and nuclear magnetic resonance properties of specific endogenous metabolites and native MRI contrast-enhancing biomolecules, label-free molecular and cellular imaging with MRI can be achieved in biomedical research and clinical management of patients with various diseases. This review article outlines the chemical and biological bases of several label-free chemically and molecularly selective MRI and MRS methods that have been applied in imaging biomarker discovery, preclinical investigation, and image-guided clinical management. Examples are provided to demonstrate strategies for using endogenous probes to report the molecular, metabolic, physiological, and functional events and processes in living systems, including patients. Future perspectives on label-free molecular MRI and its challenges as well as potential solutions, including the use of rational design and engineered approaches to develop chemical and biological imaging probes to facilitate or combine with label-free molecular MRI, are discussed.

9.
Biosensors (Basel) ; 13(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37185529

RESUMEN

In vivo bioimaging has become an indispensable tool in contemporary biomedical research and medicine [...].


Asunto(s)
Medicina de Precisión , Medicina de Precisión/métodos , Biomarcadores
10.
NMR Biomed ; 36(6): e4715, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35187749

RESUMEN

Since the inception of CEST MRI in the 1990s, a number of compounds have been identified as suitable for generating contrast, including paramagnetic lanthanide complexes, hyperpolarized atom cages and, most interesting, diamagnetic compounds. In the past two decades, there has been a major emphasis in this field on the identification and application of diamagnetic compounds that have suitable biosafety profiles for usage in medical applications. Even in the past five years there has been a tremendous growth in their numbers, with more and more emphasis being placed on finding those that can be ultimately used for patient studies on clinical 3 T scanners. At this point, a number of endogenous compounds present in tissue have been identified, and also natural and synthetic organic compounds that can be administered to highlight pathology via CEST imaging. Here we will provide a very extensive snapshot of the types of diamagnetic compound that can generate CEST MRI contrast, together with guidance on their utility on typical preclinical and clinical scanners and a review of the applications that might benefit the most from this new technology.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos
11.
Magn Reson Med ; 89(1): 177-191, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063502

RESUMEN

PURPOSE: To extract guanidinium (Guan) and amide CEST on the human brain at 3 T MRI with the high spectral resolution (HSR) CEST combined with the polynomial Lorentzian line-shape fitting (PLOF). METHODS: Continuous wave (cw) turbo spin-echo (TSE) CEST was implemented to obtain the optimum saturation parameters. Both Guan and amide CEST peaks were extracted and quantified using the PLOF method. The NMR spectra on the egg white phantoms were acquired to reveal the fitting range and the contributions to the amide and GuanCEST. Two types of CEST approaches, including cw gradient- and spin-echo (cwGRASE) and steady state EPI (ssEPI), were implemented to acquire multi-slice HSR-CEST. RESULTS: GuanCEST can be extracted with the PLOF method at 3 T, and the optimum B 1 = 0.6 µ T $$ {\mathrm{B}}_1=0.6\kern0.2em \upmu \mathrm{T} $$ was determined for GuanCEST in white matter (WM) and 1.0 µT in gray matter (GM). The optimum B1  = 0.8-1 µT was found for amideCEST. AmideCEST is lower in both WM and GM collected with ssEPI compared to those by cwGRASE (ssEPI = [1.27-1.63]%; cwGRASE = [2.19-2.25]%). The coefficients of variation (COV) of the amide and Guan CEST in both WM and GM for ssEPI (COV: 28.6-33.4%) are significantly higher than those of cwGRASE (COV: 8.6-18.8%). Completely different WM/GM contrasts for Guan and amide CEST were observed between ssEPI and cwGRASE. The amideCEST was found to have originated from the unstructured amide protons as suggested by the NMR spectrum of the unfolded proteins in egg white. CONCLUSION: Guan and amide CEST mapping can be achieved by the HSR-CEST at 3 T combing with the PLOF method.


Asunto(s)
Amidas , Encéfalo , Humanos , Guanidina/metabolismo , Amidas/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Sustancia Gris
12.
Pharmaceutics ; 14(11)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36432721

RESUMEN

PURPOSE: Mannitol is a hyperosmolar agent for reducing intracranial pressure and inducing osmotic blood-brain barrier opening (OBBBO). There is a great clinical need for a non-invasive method to optimize the safety of mannitol dosing. The aim of this study was to develop a label-free Chemical Exchange Saturation Transfer (CEST)-based MRI approach for detecting intracranial accumulation of mannitol following OBBBO. METHODS: In vitro MRI was conducted to measure the CEST properties of D-mannitol of different concentrations and pH. In vivo MRI and MRS measurements were conducted on Sprague-Dawley rats using a Biospec 11.7T horizontal MRI scanner. Rats were catheterized at the internal carotid artery (ICA) and randomly grouped to receive either 1 mL or 3 mL D-mannitol. CEST MR images were acquired before and at 20 min after the infusion. RESULTS: In vitro MRI showed that mannitol has a strong, broad CEST contrast at around 0.8 ppm with a mM CEST MRI detectability. In vivo studies showed that CEST MRI could effectively detect mannitol in the brain. The low dose mannitol treatment led to OBBBO but no significant mannitol accumulation, whereas the high dose regimen resulted in both OBBBO and mannitol accumulation. The CEST MRI findings were consistent with 1H-MRS and Gd-enhanced MRI assessments. CONCLUSION: We demonstrated that CEST MRI can be used for non-invasive, label-free detection of mannitol accumulation in the brain following BBBO treatment. This method may be useful as a rapid imaging tool to optimize the dosing of mannitol-based OBBBO and improve its safety and efficacy.

13.
Magn Reson Med ; 88(5): 2233-2241, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35713368

RESUMEN

PURPOSE: To develop a quantitative MRI method to estimate cerebrovascular reactivity (CVR) in mice. METHODS: We described an MRI procedure to measure cerebral vasodilatory response to acetazolamide (ACZ), a vasoactive agent previously used in human clinical imaging. Vascular response was determined by cerebral blood flow (CBF) measured with phase-contrast or pseudo-continuous arterial spin labeling MRI. Vasodilatory input intensity was determined by plasma ACZ level using high-performance liquid chromatography. We verified the source of the CVR MRI signal by comparing ACZ injection to phosphate-buffered saline injection and noninjection experiments. Dose dependence and feasibility of regional CVR measurement were also investigated. RESULTS: Cerebral blood flow revealed an exponential increase following intravenous ACZ injection, with a time constant of 1.62 min. In contrast, phosphate-buffered saline or noninjection exhibited a slow linear CBF increase, consistent with a gradual accumulation of anesthetic agent, isoflurane, used in this study. When comparing different ACZ doses, injections of 30, 60, 120, and 180 mg/kg yielded a linear increase in plasma ACZ concentration (p < 0.0001). On the other hand, CBF changes under these doses were not different from each other (p = 0.50). The pseudo-continuous arterial spin labeling MRI with multiple postlabeling delays revealed similar vascular responses at different postlabeling delay values. There was a regional difference in CVR (p = 0.005), with isocortex (0.81 ± 0.17%/[µg/ml]) showing higher CVR than deep-brain regions. Mice receiving multiple ACZ injections lived for a minimum of 6 months after the study without noticeable aberrant behavior or appearance. CONCLUSIONS: We demonstrated the proof-of-principle of a new quantitative CVR mapping technique in mice.


Asunto(s)
Acetazolamida , Circulación Cerebrovascular , Acetazolamida/farmacología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Fosfatos
14.
Nat Biomed Eng ; 6(5): 658-666, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132228

RESUMEN

The tracking of the in vivo biodistribution of transplanted human mesenchymal stromal cells (hMSCs) relies on reporter genes or on the addition of exogenous imaging agents. However, reporter genes and exogenous labels may require bespoke manufacturing and regulatory processes if used in cell therapies, and the labels may alter the cells' properties and are diluted on cellular division. Here we show that high-mannose N-linked glycans, which are abundantly expressed on the surface of hMSCs, can serve as a biomarker for the label-free tracking of transplanted hMSCs by mannose-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). For live mice with luciferase-transfected hMSCs transplanted into their brains, post-mortem fluorescence staining with a mannose-specific lectin showed that increases in the CEST MRI signal, which correlated well with the bioluminescence intensity of viable hMSCs for 14 days, corresponded to the presence of mannose. In vitro, osteogenically differentiated hMSCs led to lower CEST MRI signal intensities owing to the concomitantly reduced expression of mannose. The label-free imaging of hMSCs may facilitate the development and testing of cell therapies.


Asunto(s)
Manosa , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Imagen por Resonancia Magnética/métodos , Manosa/metabolismo , Ratones , Distribución Tisular
15.
Neurooncol Adv ; 4(1): vdab184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35118381

RESUMEN

BACKGROUND: Hypoxia is a prominent feature of solid tumors and can function as fertile environment for oncolytic anaerobic bacteria such as Clostridium novyi-NT (C. novyi-NT) where it can induce tumor destruction in mice and patients. However, two major obstacles have limited its use, namely the host inflammatory response and the incomplete clearance of normoxic tumor areas. METHODS: In this study, we first used a subcutaneous tumor model of a glioblastoma (GBM) cell line in immunocompetent mice to investigate the local distribution of tumor hypoxia, kinetics of C. novyi-NT germination and spread, and the local host immune response. We subsequently applied the acquired knowledge to develop a C. novyi-NT therapy in an orthotopic rabbit brain tumor model. RESULTS: We found that local accumulation of granular leukocytes, mainly neutrophils, could impede the spread of bacteria through the tumor and prevent complete oncolysis. Depletion of neutrophils via anti-Ly6G antibody or bone marrow suppression using hydroxyurea significantly improved tumor clearance. We then applied this approach to rabbits implanted with an aggressive intracranial brain tumor and achieved long-term survival in majority of the animals without apparent toxicity. CONCLUSION: These results indicated that depleting neutrophils can greatly enhance the safety and efficacy of C. novyi-NT cancer therapy for brain tumors.

16.
Nat Protoc ; 17(1): 76-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903870

RESUMEN

The blood-brain barrier (BBB) is the main obstacle to the effective delivery of therapeutic agents to the brain, compromising treatment efficacy for a variety of neurological disorders. Intra-arterial (IA) injection of hyperosmotic mannitol has been used to permeabilize the BBB and improve parenchymal entry of therapeutic agents following IA delivery in preclinical and clinical studies. However, the reproducibility of IA BBB manipulation is low and therapeutic outcomes are variable. We demonstrated that this variability could be highly reduced or eliminated when the procedure of osmotic BBB opening is performed under the guidance of interventional MRI. Studies have reported the utility and applicability of this technique in several species. Here we describe a protocol to open the BBB by IA injection of hyperosmotic mannitol under the guidance of MRI in mice. The procedures (from preoperative preparation to postoperative care) can be completed within ~1.5 h, and the skill level required is on par with the induction of middle cerebral artery occlusion in small animals. This MRI-guided BBB opening technique in mice can be utilized to study the biology of the BBB and improve the delivery of various therapeutic agents to the brain.


Asunto(s)
Barrera Hematoencefálica , Inyecciones Intraarteriales , Imagen por Resonancia Magnética , Manitol , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Masculino , Manitol/administración & dosificación , Manitol/farmacología , Ratones , Ratones SCID , Presión Osmótica
17.
NMR Biomed ; 35(3): e4649, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779550

RESUMEN

Natural and synthetic sugars have great potential for developing highly biocompatible and translatable chemical exchange saturation transfer (CEST) MRI contrast agents. In this study, we aimed to develop the smallest clinically available form of dextran, Dex1 (molecular weight, MW ~ 1 kDa), as a new CEST agent. We first characterized the CEST properties of Dex1 in vitro at 11.7 T and showed that the Dex1 had a detectable CEST signal at ~1.2 ppm, attributed to hydroxyl protons. In vivo CEST MRI studies were then carried out on C57BL6 mice bearing orthotopic GL261 brain tumors (n = 5) using a Bruker BioSpec 11.7 T MRI scanner. Both steady-state full Z-spectral images and single offset (1.2 ppm) dynamic dextran-enhanced (DDE) images were acquired before and after the intravenous injection of Dex1 (2 g/kg). The steady-state Z-spectral analysis showed a significantly higher CEST contrast enhancement in the tumor than in contralateral brain (∆MTRasym1.2 ppm  = 0.010 ± 0.006 versus 0.002 ± 0.008, P = 0.0069) at 20 min after the injection of Dex1. Pharmacokinetic analyses of DDE were performed using the area under the curve (AUC) in the first 10 min after Dex1 injection, revealing a significantly higher uptake of Dex1 in the tumor than in brain tissue for tumor-bearing mice (AUC[0-10 min] = 21.9 ± 4.2 versus 5.3 ± 6.4%·min, P = 0.0294). In contrast, no Dex1 uptake was foundling in the brains of non-tumor-bearing mice (AUC[0-10 min] = -1.59 ± 2.43%·min). Importantly, the CEST MRI findings were consistent with the measurements obtained using DCE MRI and fluorescence microscopy, demonstrating the potential of Dex1 as a highly translatable CEST MRI contrast agent for assessing tumor hemodynamics.


Asunto(s)
Medios de Contraste , Aumento de la Imagen , Imagen por Resonancia Magnética/métodos , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Dextranos , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente
18.
J Extracell Biol ; 1(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36591537

RESUMEN

Extracellular vesicles (EVs) have potential in disease treatment since they can be loaded with therapeutic molecules and engineered for retention by specific tissues. However, questions remain on optimal dosing, administration, and pharmacokinetics. Previous studies have addressed biodistribution and pharmacokinetics in rodents, but little evidence is available for larger animals. Here, we investigated the pharmacokinetics and biodistribution of Expi293F-derived EVs labelled with a highly sensitive nanoluciferase reporter (palmGRET) in a non-human primate model (Macaca nemestrina), comparing intravenous (IV) and intranasal (IN) administration over a 125-fold dose range. We report that EVs administered IV had longer circulation times in plasma than previously reported in mice and were detectable in cerebrospinal fluid (CSF) after 30-60 minutes. EV association with PBMCs, especially B-cells, was observed as early as one minute post-administration. EVs were detected in liver and spleen within one hour of IV administration. However, IN delivery was minimal, suggesting that pretreatment approaches may be needed in large animals. Furthermore, EV circulation times strongly decreased after repeated IV administration, possibly due to immune responses and with clear implications for xenogeneic EV-based therapeutics. We hope that our findings from this baseline study in macaques will help to inform future research and therapeutic development of EVs.

19.
NMR Biomed ; 35(2): e4626, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34668251

RESUMEN

Chemical exchange saturation transfer (CEST) magnetic resonance imaging has shown promise for classifying tumors based on their aggressiveness, but CEST contrast is complicated by multiple signal sources and thus prolonged acquisition times are often required to extract the signal of interest. We investigated whether deep learning could help identify pertinent Z-spectral features for distinguishing tumor aggressiveness as well as the possibility of acquiring only the pertinent spectral regions for more efficient CEST acquisition. Human breast cancer cells, MDA-MB-231 and MCF-7, were used to establish bi-lateral tumor xenografts in mice to represent higher and lower aggressive tumors, respectively. A convolutional neural network (CNN)-based classification model, trained on simulated data, utilized Z-spectral features as input to predict labels of different tissue types, including MDA-MB-231, MCF-7, and muscle tissue. Saliency maps reported the influence of Z-spectral regions on classifying tissue types. The model was robust to noise with an accuracy of more than 91.5% for low and moderate noise levels in simulated testing data (SD of noise less than 2.0%). For in vivo CEST data acquired with a saturation pulse amplitude of 2.0 µT, the model had a superior ability to delineate tissue types compared with Lorentzian difference (LD) and magnetization transfer ratio asymmetry (MTRasym ) analysis, classifying tissues to the correct types with a mean accuracy of 85.7%, sensitivity of 81.1%, and specificity of 94.0%. The model's performance did not improve substantially when using data acquired at multiple saturation pulse amplitudes or when adding LD or MTRasym spectral features, and did not change when using saliency map-based partial or downsampled Z-spectra. This study demonstrates the potential of CNN-based classification to distinguish between different tumor types and muscle tissue, and speed up CEST acquisition protocols.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/diagnóstico por imagen , Aprendizaje Profundo , Imagen por Resonancia Magnética/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Redes Neurales de la Computación
20.
Biomaterials ; 275: 120942, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34147718

RESUMEN

The blood-brain barrier (BBB) tightly controls entry of molecules and cells into the brain, restricting the delivery of therapeutics. Blood-brain barrier opening (BBBO) utilizes reversible disruption of cell-cell junctions between brain microvascular endothelial cells to enable transient entry into the brain. Here, we demonstrate that melittin, a membrane active peptide present in bee venom, supports transient BBBO. From endothelial and neuronal viability studies, we first identify the accessible concentration range for BBBO. We then use a tissue-engineered model of the human BBB to optimize dosing and elucidate the mechanism of opening. Melittin and other membrane active variants transiently increase paracellular permeability via disruption of cell-cell junctions that result in transient focal leaks. To validate the results from the tissue-engineered model, we then demonstrate that transient BBBO can be reproduced in a mouse model. We identify a minimum clinically effective intra-arterial dose of 3 µM min melittin, which is reversible within one day and neurologically safe. Melittin-induced BBBO represents a novel technology for delivery of therapeutics into the brain.


Asunto(s)
Barrera Hematoencefálica , Meliteno , Animales , Transporte Biológico , Encéfalo , Células Endoteliales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA