Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 143(22): 2300-2313, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38447046

RESUMEN

ABSTRACT: Long noncoding RNAs (lncRNAs) are extensively expressed in eukaryotic cells and have been revealed to be important for regulating cell differentiation. Many lncRNAs have been found to regulate erythroid differentiation in the mouse. However, given the low sequence conservation of lncRNAs between mouse and human, our understanding of lncRNAs in human erythroid differentiation remains incomplete. lncRNAs are often transcribed opposite to protein coding genes and regulate their expression. Here, we characterized a human erythrocyte-expressed lncRNA, GATA2AS, which is transcribed opposite to erythroid transcription regulator GATA2. GATA2AS is a 2080-bp long, primarily nucleus-localized noncoding RNA that is expressed in erythroid progenitor cells and decreases during differentiation. Knockout of GATA2AS in human HUDEP2 erythroid progenitor cells using CRISPR-Cas9 genome editing to remove the transcription start site accelerated erythroid differentiation and dysregulated erythroblast gene expression. We identified GATA2AS as a novel GATA2 and HBG activator. Chromatin isolation by RNA purification showed that GATA2AS binds to thousands of genomic sites and colocalizes at a subset of sites with erythroid transcription factors including LRF and KLF1. RNA pulldown and RNA immunoprecipitation confirmed interaction between GATA2AS and LRF and KLF1. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that knockout of GATA2AS reduces binding of these transcription factors genome wide. Assay for transposase-accessible chromatin sequencing (ATAC-seq) and H3K27ac ChIP-seq showed that GATA2AS is essential to maintain the chromatin regulatory landscape during erythroid differentiation. Knockdown of GATA2AS in human primary CD34+ cells mimicked results in HUDEP2 cells. Overall, our results implicate human-specific lncRNA GATA2AS as a regulator of erythroid differentiation by influencing erythroid transcription factor binding and the chromatin regulatory landscape.


Asunto(s)
Cromatina , Eritropoyesis , Factor de Transcripción GATA2 , ARN Largo no Codificante , Humanos , Eritropoyesis/genética , ARN Largo no Codificante/genética , Cromatina/metabolismo , Cromatina/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Diferenciación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/citología
2.
Nucleic Acids Res ; 50(16): 9195-9211, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36018801

RESUMEN

Enhancers establish proximity with distant target genes to regulate temporospatial gene expression and specify cell identity. Lim domain binding protein 1 (LDB1) is a conserved and widely expressed protein that functions as an enhancer looping factor. Previous studies in erythroid cells and neuronal cells showed that LDB1 forms protein complexes with different transcription factors to regulate cell-specific gene expression. Here, we show that LDB1 regulates expression of liver genes by occupying enhancer elements and cooperating with hepatic transcription factors HNF4A, FOXA1, TCF7 and GATA4. Using the glucose transporter SLC2A2 gene, encoding GLUT2, as an example, we find that LDB1 regulates gene expression by mediating enhancer-promoter interactions. In vivo, we find that LDB1 deficiency in primary mouse hepatocytes dysregulates metabolic gene expression and changes the enhancer landscape. Conditional deletion of LDB1 in adult mouse liver induces glucose intolerance. However, Ldb1 knockout hepatocytes show improved liver pathology under high-fat diet conditions associated with increased expression of genes related to liver fatty acid metabolic processes. Thus, LDB1 is linked to liver metabolic functions under normal and obesogenic conditions.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Expresión Génica , Hepatocitos/metabolismo , Hígado/metabolismo
3.
Biochim Biophys Acta Gene Regul Mech ; 1862(6): 625-633, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31022553

RESUMEN

The eukaryotic genome is organized at varying levels into chromosome territories, transcriptional compartments and topologically associating domains (TADs), which are architectural features largely shared between different cell types and across species. In contrast, within TADs, chromatin loops connect enhancers and their target genes to establish unique transcriptomes that distinguish cells and tissues from each other and underlie development and differentiation. How these tissue-specific and temporal stage-specific long-range contacts are formed and maintained is a fundamental question in biology. The widely expressed Lim domain binding 1 protein, LDB1, plays a critical role in connecting enhancers and genes by forming complexes with cell-type specificity across diverse developmental pathways including neurogenesis, cardiogenesis, retinogenesis and hematopoiesis. Here we review the multiple roles of LDB1 in cell fate determination and in chromatin loop formation, with an emphasis on mammalian systems, to illuminate how LDB1 functions in normal cells and in diseases such as cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Proteínas con Dominio LIM/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans , Diferenciación Celular , Cromatina , Proteínas de Unión al ADN/genética , Expresión Génica , Humanos , Proteínas con Dominio LIM/genética , Modelos Moleculares , Neurogénesis , Proteínas Nucleares/metabolismo , Organogénesis , Regiones Promotoras Genéticas , Dominios Proteicos/fisiología , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/genética , Transcriptoma
4.
Oncotarget ; 8(55): 93516-93529, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29212169

RESUMEN

CCCTC-binding factor (CTCF) is an important epigenetic regulator implicated in multiple cellular processes, including growth, proliferation, differentiation, and apoptosis. Although CTCF deletion or mutation has been associated with human breast cancer, the role of CTCF in breast cancer is questionable. We investigated the biological functions of CTCF in breast cancer and the underlying mechanism. The results showed that CTCF expression in human breast cancer cells and tissues was significantly lower than that in normal breast cells and tissues. In addition, CTCF expression correlated significantly with cancer stage (P = 0.043) and pathological differentiation (P = 0.029). Furthermore, CTCF overexpression resulted in the inhibition of proliferation, migration, and invasion, while CTCF knockdown induced these processes in breast cancer cells. Transcriptome analysis and further experimental confirmation in MDA-MD-231 cells revealed that forced overexpression of CTCF might attenuate the DNA-binding ability of nuclear factor-kappaB (NF-κB) p65 subunit and inhibit activation of NF-κB and its target pro-oncogenes (tumor necrosis factor alpha-induced protein 3 [TNFAIP3]) and genes for growth-related proteins (early growth response protein 1 [EGR1] and growth arrest and DNA-damage-inducible alpha [GADD45a]). The present study provides a new insight into the tumor suppressor roles of CTCF in breast cancer development and suggests that the CTCF/NF-κB pathway is a potential target for breast cancer therapy.

5.
Nucleic Acids Res ; 44(6): 2613-27, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26615201

RESUMEN

The Hox genes encode transcription factors that determine embryonic pattern formation. In embryonic stem cells, the Hox genes are silenced by PRC2. Recent studies have reported a role for long noncoding RNAs in PRC2 recruitment in vertebrates. However, little is known about how PRC2 is recruited to the Hox genes in ESCs. Here, we used stable knockdown and knockout strategies to characterize the function of the long noncoding RNAGm15055 in the regulation of Hoxa genes in mouse ESCs. We found that Gm15055 is highly expressed in mESCs and its expression is maintained by OCT4.Gm15055 represses Hoxa gene expression by recruiting PRC2 to the cluster and maintaining the H3K27me3 modification on Hoxa promoters. A chromosome conformation capture assay revealed the close physical association of the Gm15055 locus to multiple sites at the Hoxa gene cluster in mESCs, which may facilitate the in cis targeting of Gm15055RNA to the Hoxa genes. Furthermore, an OCT4-responsive positive cis-regulatory element is found in the Gm15055 gene locus, which potentially regulates both Gm15055 itself and the Hoxa gene activation. This study suggests how PRC2 is recruited to the Hoxa locus in mESCs, and implies an elaborate mechanism for Hoxa gene regulation in mESCs.


Asunto(s)
Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , Familia de Multigenes , Factor 3 de Transcripción de Unión a Octámeros/genética , Complejo Represivo Polycomb 2/genética , ARN Largo no Codificante/genética , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
6.
Sci China Life Sci ; 58(9): 860-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26376810

RESUMEN

Spatial expression patterns of homeobox (HOX) genes delineate positional identity of primary fibroblasts from different topographic sites. The molecular mechanism underlying the establishing or maintaining of HOX gene expression pattern remains an attractive developmental issue to be addressed. Our previous work suggested a critical role of CTCF/cohesin-mediated higher- order chromatin structure in RA-induced HOXA activation in human teratocarcinoma NT2/D1 cells. This study investigated the recruitment of CTCF and cohesin, and the higher-order chromatin structure of the HOXA locus in fetal lung and adult foreskin fibroblasts, which display complementary HOXA gene expression patterns. Chromatin contacts between the CTCF-binding sites were observed with lower frequency in human foreskin fibroblasts. This observation is consistent with the lower level of cohesin recruitment and 5' HOXA gene expression in the same cells. We also showed that CTCF-binding site A56 (CBSA56) related chromatin structures exhibit the most notable changes in between the two types of cell, and hence may stand for one of the key CTCF-binding sites for cell-type specific chromatin structure organization. Together, these results imply that CTCF/cohesin coordinates HOXA cluster higher-order chromatin structure and expression during development, and provide insight into the relationship between cell-type specific chromatin organization and the spatial collinearity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Fibroblastos/metabolismo , Proteínas de Homeodominio/genética , Familia de Multigenes , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Factor de Unión a CCCTC , Línea Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Fibroblastos/citología , Prepucio/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Homeobox , Células HEK293 , Humanos , Pulmón/citología , Pulmón/embriología , Masculino , Unión Proteica , Proteínas Represoras/genética , Cohesinas
7.
Mol Cell Biol ; 34(20): 3867-79, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25135475

RESUMEN

HOX cluster genes are activated sequentially in their positional order along the chromosome during vertebrate development. This phenomenon, known as temporal colinearity, depends on transcriptional silencing of 5' HOX genes. Chromatin looping was recently identified as a conserved feature of silent HOX clusters, with CCCTC-binding factor (CTCF) binding sites located at the loop bases. However, the potential contribution of CTCF to HOX cluster silencing and the underlying mechanism have not been established. Here, we demonstrate that the HOXA locus is organized by CTCF into chromatin loops and that CTCF depletion causes significantly enhanced activation of HOXA3 to -A7, -A9 to -A11, and -A13 in response to retinoic acid, with the highest effect observed for HOXA9. Our subsequent analyses revealed that CTCF facilitates the stabilization of Polycomb repressive complex 2 (PRC2) and trimethylated lysine 27 of histone H3 (H3K27me3) at the human HOXA locus. Our results reveal that CTCF functions as a controller of HOXA cluster silencing and mediates PRC2-repressive higher-order chromatin structure.


Asunto(s)
Cromatina/genética , Silenciador del Gen , Proteínas de Homeodominio/genética , Complejo Represivo Polycomb 2/fisiología , Proteínas Represoras/fisiología , Secuencia de Bases , Factor de Unión a CCCTC , Línea Celular Tumoral , Cromatina/metabolismo , Sitios Genéticos , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/ultraestructura , Humanos , Conformación Molecular , Estabilidad Proteica , Eliminación de Secuencia , Tretinoina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...