Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(26): 30326-30336, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34162211

RESUMEN

Plasmid DNA (pDNA) nanoparticles synthesized by complexation with linear polyethylenimine (lPEI) are one of the most effective non-viral gene delivery vehicles. However, the lack of scalable and reproducible production methods and the high toxicity have hindered their clinical translation. Previously, we have developed a scalable flash nanocomplexation (FNC) technique to formulate pDNA/lPEI nanoparticles using a continuous flow process. Here, we report a tangential flow filtration (TFF)-based scalable purification method to reduce the uncomplexed lPEI concentration in the nanoparticle formulation and improve its biocompatibility. The optimized procedures achieved a 60% reduction of the uncomplexed lPEI with preservation of the nanoparticle size and morphology. Both in vitro and in vivo studies showed that the purified nanoparticles significantly reduced toxicity while maintaining transfection efficiency. TFF also allows for gradual exchange of solvents to isotonic solutions and further concentrating the nanoparticles for injection. Combining FNC production and TFF purification, we validated the purified pDNA/lPEI nanoparticles for future clinical translation of this gene nanomedicine.


Asunto(s)
ADN/aislamiento & purificación , Filtración/métodos , Nanopartículas/química , Plásmidos/aislamiento & purificación , Animales , ADN/química , Femenino , Técnicas de Transferencia de Gen , Humanos , Ratones Endogámicos BALB C , Células PC-3 , Plásmidos/química , Polietileneimina/química
2.
Sci Rep ; 11(1): 9733, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958660

RESUMEN

Treatment of cancers in the lung remains a critical challenge in the clinic for which gene therapy could offer valuable options. We describe an effective approach through systemic injection of engineered polymer/DNA nanoparticles that mediate tumor-specific expression of a therapeutic gene, under the control of the cancer-selective progression elevated gene 3 (PEG-3) promoter, to treat tumors in the lungs of diseased mice. A clinically tested, untargeted, polyethylenimine carrier was selected to aid rapid transition to clinical studies, and a CpG-free plasmid backbone and coding sequences were used to reduce inflammation. Intravenous administration of nanoparticles expressing murine single-chain interleukin 12, under the control of PEG-3 promoter, significantly improved the survival of mice in both an orthotopic and a metastatic model of lung cancer with no marked symptoms of systemic toxicity. These outcomes achieved using clinically relevant nanoparticle components raises the promise of translation to human therapy.


Asunto(s)
ADN/administración & dosificación , Técnicas de Transferencia de Gen , Terapia Genética , Interleucina-12/genética , Neoplasias Pulmonares/terapia , Animales , ADN/genética , ADN/uso terapéutico , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inyecciones , Neoplasias Pulmonares/genética , Ratones , Ratones SCID , Nanomedicina , Nanopartículas/administración & dosificación , Nanopartículas/química , Polietileneimina/administración & dosificación , Polietileneimina/química
3.
ACS Nano ; 13(9): 10161-10178, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31503450

RESUMEN

Polyelectrolyte complex (PEC) nanoparticles assembled from plasmid DNA (pDNA) and polycations such as linear polyethylenimine (lPEI) represent a major nonviral delivery vehicle for gene therapy tested thus far. Efforts to control the size, shape, and surface properties of pDNA/polycation nanoparticles have been primarily focused on fine-tuning the molecular structures of the polycationic carriers and on assembly conditions such as medium polarity, pH, and temperature. However, reproducible production of these nanoparticles hinges on the ability to control the assembly kinetics, given the nonequilibrium nature of the assembly process and nanoparticle composition. Here we adopt a kinetically controlled mixing process, termed flash nanocomplexation (FNC), that accelerates the mixing of pDNA solution with polycation lPEI solution to match the PEC assembly kinetics through turbulent mixing in a microchamber. This achieves explicit control of the kinetic conditions for pDNA/lPEI nanoparticle assembly, as demonstrated by the tunability of nanoparticle size, composition, and pDNA payload. Through a combined experimental and simulation approach, we prepared pDNA/lPEI nanoparticles having an average of 1.3 to 21.8 copies of pDNA per nanoparticle and average size of 35 to 130 nm in a more uniform and scalable manner than bulk mixing methods. Using these nanoparticles with defined compositions and sizes, we showed the correlation of pDNA payload and nanoparticle formulation composition with the transfection efficiencies and toxicity in vivo. These nanoparticles exhibited long-term stability at -20 °C for at least 9 months in a lyophilized formulation, validating scalable manufacture of an off-the-shelf nanoparticle product with well-defined characteristics as a gene medicine.


Asunto(s)
ADN/metabolismo , Nanopartículas/química , Plásmidos/metabolismo , Polielectrolitos/química , Animales , Línea Celular Tumoral , Dispersión Dinámica de Luz , Liofilización , Humanos , Cinética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polietileneimina/química , Factores de Tiempo , Transfección , Transgenes
4.
Small ; 12(45): 6214-6222, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27717227

RESUMEN

Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress toward clinical translation of these nanoparticle-based gene medicine. Here the authors report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles.


Asunto(s)
ADN/química , Nanopartículas/química , Plásmidos/química , Poliaminas/química , Técnicas de Transferencia de Gen , Nanotecnología , Polielectrolitos , Polietileneimina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA