Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; : e202400269, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619083

RESUMEN

Described is a new synthetic route to bis(2-hydroxy-3,5-di-t-butylphenyl)methanone and its derivatives. The combined esterification/photo-Fries rearrangement approach enables a modular preparation of keto-bridged polyphenols. This protecting group-free process is highly atom- and step-economic, and a scalable production was easily achieved in the continuous-flow mode.

2.
Front Chem ; 10: 1001311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176888

RESUMEN

CmnC is an α-ketoglutarate (α-KG)-dependent non-heme iron oxygenase involved in the formation of the l-capreomycidine (l-Cap) moiety in capreomycin (CMN) biosynthesis. CmnC and its homologues, VioC in viomycin (VIO) biosynthesis and OrfP in streptothricin (STT) biosynthesis, catalyze hydroxylation of l-Arg to form ß-hydroxy l-Arg (CmnC and VioC) or ß,γ-dihydroxy l-Arg (OrfP). In this study, a combination of biochemical characterization and structural determination was performed to understand the substrate binding environment and substrate specificity of CmnC. Interestingly, despite having a high conservation of the substrate binding environment among CmnC, VioC, and OrfP, only OrfP can hydroxylate the substrate enantiomer d-Arg. Superposition of the structures of CmnC, VioC, and OrfP revealed a similar folds and overall structures. The active site residues of CmnC, VioC, and OrfP are almost conserved; however Leu136, Ser138, and Asp249 around the substrate binding pocket in CmnC are replaced by Gln, Gly, and Tyr in OrfP, respectively. These residues may play important roles for the substrate binding. The mutagenesis analysis revealed that the triple mutant CmnCL136Q,S138G,D249Y switches the substrate stereoselectivity from l-Arg to d-Arg with ∼6% relative activity. The crystal structure of CmnCL136Q,S138G,D249Y in complex with d-Arg revealed that the substrate loses partial interactions and adopts a different orientation in the binding site. This study provides insights into the enzyme engineering to α-KG non-heme iron oxygenases for adjustment to the substrate stereoselectivity and development of biocatalysts.

3.
Inorg Chem ; 61(33): 13096-13103, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35946578

RESUMEN

We report on the remarkable stability of unprecedented, monomeric lead(II) hydrides M+[LPb(II)H]- (M[1-H]), where L = 2,6-bis(3,5-diphenylpyrrolyl)pyridine and M = (18-crown-6)potassium or ([2.2.2]-cryptand)potassium. The half-life of [K18c6][1-H] of ∼2 days in tetrahydrofuran at 25 °C is significantly longer than those reported for dimeric lead(II) hydrides supported by bulky terphenyl ligands (few hours at low temperatures), which are the only examples known for lead(II) hydride compounds. The presence of a Pb-H bond in [1-H]- was unambiguously identified by multinuclear NMR spectroscopy. Remarkably, a 1H resonance of the hydride ligand was found at δ = 41.43 ppm (1JPbH = 1312 Hz). For reactivity study, [1-H]- serves as an excellent hydroboration catalyst with high turnover numbers and turnover frequencies for several carbonyl compounds.

4.
Inorg Chem ; 61(16): 6026-6036, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35394279

RESUMEN

Unlike isolable tin(II) hydrides supported by bulky ligands reported in the literature, this research describes the synthesis and characterization of thermally stable tin(II) hydrides LPhSnH (1-H) and MeLSnH (2-H) stabilized by sterically undemanding N,N,N-coordinating pincer-type ligands (LPh = 2,5-dipyridyl-3,4-diphenylpyrrolato; MeL = 2,5-bis(6-methylpyridyl)pyrrolato). The results from previous reports reveal that attempts to access tin(II) hydrides containing less-bulky ligands have had limited success, and decomposition to tin(I) distannynes often occurs. The key to the successful isolation of 1-H and 2-H is the identification of the role of Lewis acidic BsBu3, generated upon delivering hydride from commonly used hydride reagents M[BsBu3H] ("selectrides", M = Li or K). This study details compelling experimental evidence and theoretical results of the role played by BsBu3, which catalyzes the dehydrocoupling reactions of 1-H and 2-H to yield tin(I) distannynes LPhSn-SnLPh (12) and MeLSn-SnMeL (22) with the liberation of H2. To avoid the interference of BsBu3, 1-H and 2-H can be isolated in pure forms using pinacolborane as the hydride donor with LPhSnOMe (1-OMe) and MeLSnOMe (2-OMe) as reactants, respectively. DFT calculations and experimental observations indicate that the coordination of the Sn-H bond of 1-H to BsBu3 leaves an electrophilic tin center, rendering the nucleophilic attack by the second equivalent of 1-H forming a Sn-Sn bond.

5.
Chem Commun (Camb) ; 56(50): 6786-6789, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32427248

RESUMEN

A series of tri-tin complexes (LPhSn)3X with triple-decker structures (LPh = 2,5-di(o-pyridyl)-3,4-diphenylpyrrolate; X = Cl, AlCl4, OTf, and PF6) was synthesized by reducing LPhSnCl with LiBsBu3H and subsequent reactions. Structural characterization of (LPhSn)3Cl revealed a Sn-Sn-Sn core, and DFT calculations suggest that its HOMO is primarily σ-bonding along the tri-tin framework. (LPhSn)3Cl reacts with W(CO)5THF to afford (LPhSn)2(W(CO)5)2 and LPhSnCl, implying that (LPhSn)3Cl may exhibit dynamic behavior in solution.

6.
Dalton Trans ; 47(35): 12138-12146, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30083678

RESUMEN

An unusual cyclometalation reaction results from a C-C bond activation in Cp*(IPr)RuCl to give Cp*(IPr')Ru(L) featuring a NHC-C(sp2) chelating ligand (5-L; L = propene, N2; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; IPr' = 1-(6-isopropylphenyl)-3-(2,6-diisopropylphenyl)imidazol-2-ylidene). DFT calculations were employed to elucidate the C-C bond activation pathway. Reactions of cyclometalated ruthenium complexes bearing NHC-C(sp2) and NHC-C(sp3) ligands (5-L and Cp*(IXy-H)Ru(N2), 1a, respectively where IXy = 1,3-bis(2,6-dimethylphenyl)-imidazol-2-ylidene; IXy-H is the deprotonated form of (IXy)) are reported. Deprotonation of 1a by an equimolar mixture of benzyl potassium and 18-crown-6 afforded a doubly-cyclometalated complex [Cp*(IXy-2H)Ru][K(18-crown-6)] (7). A lower CO stretching frequency in Cp*(IXy-H)Ru(CO) (8) vs. Cp*(IPr')Ru(CO) (9) suggests that the NHC-C(sp3) ligand is more electron donating. Complexes 5-L reacted with H2 to give the dihydride Cp*(IPr')RuH2 (11). In comparison, after an initial oxidative addition of H2, complex 1a with its more reactive Ru-C(sp3) bond underwent C-H bond reductive elimination, and a second oxidative addition of H2 afforded the trihydride Cp*(IXy)RuH3 (10). Reaction of 1a with B(C6F5)3 resulted in a zwitterionic complex Cp*Ru(IXy'') (12; IXy'' = 1-[2-((C6F5)3BCH2)C6H3-6-methyl]-3-(2,6-dimethylphenyl)imidazol-2-ylidene-1-yl) by the formation of a new C-B bond. In contrast, B(C6F5)3 abstracted a hydride from 5-L and promoted a very unusual C-C bond formation involving insertion of an allyl ligand into a Ru-C bond to form [Cp*Ru(IPr'')][HB(C6F5)3] (IPr'' = 1-[2-(CH2[double bond, length as m-dash]CHCH2)C6H3-6-isopropyl]-3-(2,6-diisopropyl)imidazol-2-ylidene-1-yl) (13).

7.
Chem Sci ; 9(24): 5366-5371, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30009008

RESUMEN

We report a surface organometallic route that generates copper nanoparticles (NPs) on a silica support while simultaneously passivating the silica surface with trimethylsiloxy groups. The material is active for the catalytic semihydrogenation of phenylalkyl-, dialkyl- and diaryl-alkynes and displays high chemo- and stereoselectivity at full alkyne conversion to corresponding (Z)-olefins in the presence of an N-heterocyclic carbene (NHC) ligand. Solid-state NMR spectroscopy using the NHC ligand 13C-labeled at the carbenic carbon reveals a genuine coordination of the carbene to Cu NPs. The presence of distinct Cu surface environments and the coordination of the NHC to specific Cu sites likely account for the increased selectivity.

8.
Adv Mater ; 29(41)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28833617

RESUMEN

CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2 O3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2 O3 for structural stabilization, thus maximizing the fraction of CO2 -capture-active CaO.

9.
Chem Sci ; 8(3): 2426-2430, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451349

RESUMEN

Mechanistic insight into the semihydrogenation of 1-butyne and 2-butyne on Cu nanoparticles supported on partially dehydroxylated silica (Cu/SiO2-700) was obtained using parahydrogen. Hydrogenation of 1-butyne over Cu/SiO2-700 yielded 1-butene with ≥97% selectivity. The surface modification of this catalyst with tricyclohexylphosphine (PCy3) increased the selectivity to 1-butene up to nearly 100%, although at the expense of reduced catalytic activity. Similar trends were observed in the hydrogenation of 2-butyne, where Cu/SiO2-700 provided a selectivity to 2-butene in the range of 72-100% depending on the reaction conditions, while the catalyst modified with PCy3 again demonstrated nearly 100% selectivity. Parahydrogen-induced polarization effects observed in hydrogenation reactions catalyzed by copper-based catalysts demonstrate the viability of pairwise hydrogen addition over these catalysts. Contribution of pairwise hydrogen addition to 1-butyne was estimated to be at least 0.2-0.6% for unmodified Cu/SiO2-700 and ≥2.7% for Cu/SiO2-700 modified with PCy3, highlighting the effect of surface modification with the tricyclohexylphosphine ligand.

10.
J Am Chem Soc ; 138(50): 16502-16507, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998097

RESUMEN

Narrowly dispersed, silica-supported Cu nanoparticles (ca. 2 nm) prepared via surface organometallic chemistry from a mesityl complex [Cu5Mes5] are highly active for the hydrogenation of a broad range of alkynes. High-throughput experimentation allows for identifying the optimal ligand and reaction conditions to turn these supported Cu nanoparticles into highly chemo- and stereoselective catalysts for the preparation of Z-olefins (overall, 23 examples). For instance, PCy3-modified Cu nanoparticles semihydrogenate 1-phenyl-1-propyne to cis-ß-methylstyrene (20 bar H2, 40 °C) with turnover number and turnover frequency of ca. 540 and 1.9 min-1, respectively, and with 94% selectivity at full conversion.

11.
J Am Chem Soc ; 137(28): 9186-94, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26135519

RESUMEN

Masked silylene complexes Cp*(IXy-H)(H)RuSiH2R (R = Mes (3) and Trip (4); IXy = 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; "IXy-H" is the deprotonated form of IXy) exhibit metallosilylene-like (LnM-Si-R) reactivity, as observed in reactions of nonenolizable ketones, enones, and tosyl azides, to give unprecedented silaoxiranyl, oxasilacyclopentenyl, and silaiminyl complexes, respectively. Notably, these silicon-containing complexes are derived from the primary silanes MesSiH3 and TripSiH3 via activation of all three Si-H bonds. DFT calculations suggest that the mechanism of formation for the silaoxiranyl complex Cp*(IXy)(H)2Ru-Si(OCPh2)Trip (6) involves coordination of benzophenone to a silylene silicon atom, followed by a single-electron transfer in which Si-bonded, non-innocent benzophenone accepts an electron from the reactive, electron-rich ruthenium center. Importantly, this electron transfer promotes an unusual 1,2-hydrogen migration to the resulting, more electron-deficient ruthenium center via a diradicaloid transition state.

12.
Angew Chem Int Ed Engl ; 54(22): 6622-6, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25845838

RESUMEN

Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2 Ru-Sn-Trip] (1; IXy=1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; Cp*=η(5) -C5 Me5 ; Trip=2,4,6-iPr3 C6 H2 ) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,ß-unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2 RuSn(κ(2) -O,O-OCPhCPhO)Trip] (2) and [Cp*(IXy)(H)2 RuSn(κ(2) -O,C-OCPhCHCHPh)Trip] (3), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin-substituted ketene complex [Cp*(IXy)(H)2 RuSn(OC2 H5 )(CHCO)Trip] (4), which is most likely a decomposition product from the putative ruthenium-substituted stannene complex. The isolation of a ruthenium-substituted stannene [Cp*(IXy)(H)2 RuSn(=Flu)Trip] (5) and stanna-imine [Cp*(IXy)(H)2 RuSn(κ(2) -N,O-NSO2 C6 H4 Me)Trip] (6) complexes was achieved by treatment of 1 with 9-diazofluorene and tosyl azide, respectively.

13.
J Am Chem Soc ; 136(40): 13991-4, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25247392

RESUMEN

An intramolecular 1,2(α)-H migration in a saturated ruthenium stannylene complex, to form a ruthenostannylene complex, involves a reversal of the role for a coordinated stannylene ligand, from that of an electron donor to an acceptor in the transition state. This change in the bonding properties for a stannylene group, with a simple molecular motion, lifts the usual requirement for generation of an unsaturated metal center in migration chemistry.

14.
J Am Chem Soc ; 136(32): 11473-82, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25050912

RESUMEN

The synthesis of the cyclometalated complexes Cp*Ru(IXy-H) (2) [IXy = 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; IXy-H = 1-(2-CH2C6H3-6-methyl)-3-(2,6-dimethylphenyl)imidazol-2-ylidene-1-yl (the deprotonated form of IXy); Cp* = η(5)-C5Me5] and Cp*Ru(IXy-H)(N2) (3) was achieved by dehydrochlorination of Cp*Ru(IXy)Cl (1) with KCH2Ph. Complexes 2 and 3 activate primary silanes (RSiH3) to afford the silyl complexes Cp*(IXy-H)(H)RuSiH2R [R = p-Tol (4), Mes (5), Trip (6)]. Density functional theory studies indicated that these complexes are close in energy to the corresponding isomeric silylene species Cp*(IXy)(H)Ru═SiHR. Indeed, reactivity studies indicated that various reagents trap the silylene isomer of 6, Cp*(IXy)(H)Ru═SiHTrip (6a). Thus, benzaldehyde reacts with 6 to give the [2 + 2] cycloaddition product 7, while 4-bromoacetophenone reacts via C-H bond cleavage and formation of the enolate Cp*(IXy)(H)2RuSiH[OC(═CH2)C6H4Br]Trip (8). Addition of the O-H bond of 2,6-dimethylphenol across the Ru═Si bond of 6a gives Cp*(IXy)(H)2RuSiH(2,6-Me2C6H3O)Trip (9). Interestingly, CuOTf and AgOTf also react with 6 to provide unusual Lewis acid-stabilized silylene complexes in which MOTf bridges the Ru-Si bond. The AgOTf complex, which was crystallographically characterized, exhibits a structure similar to that of [Cp*((i)Pr3P)Ru(µ-H)2SiHMes](+), with a three-center, two-electron Ru-Ag-Si interaction. Natural bond orbital analysis of the MOTf complexes supported this type of bonding and characterized the donor interaction with Ag (or Cu) as involving a delocalized interaction with contributions from the carbene, silylene, and hydride ligands of Ru.

15.
Chem Commun (Camb) ; (42): 6382-4, 2009 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19841784

RESUMEN

The first paradigm of halide-controlled interconversion between two- and three-coordinate copper(i) complexes, [Cu(L(Ph))](ClO(4)) (1?ClO(4)) and [Cu(L(Ph))I] (2), where L(Ph) = 1,3-bis-(3,5-dimethyl-pyrazol-1-ylmethyl)-2-phenyl-2,3-dihydro-1H-perimidine, was presented, which can result in reversible fluorescence changes.

16.
Dalton Trans ; (25): 3358-62, 2008 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-18560668

RESUMEN

A novel set of stereochemically nonrigid monomeric two-coordinate copper(I) complexes, [Cu(eta(1)-H(2)CPz''(2))(2)]ClO(4) 1, [Cu(HPz'')(2)]ClO(4) 2, and [Cu(HPz'')(eta(1)-H(2)CPz''(2))]ClO(4) 3, where Pz'' = 3,5-di-tert-butylpyrazolyl, has been synthesized and characterized by X-ray diffraction and variable-temperature (1)H NMR spectroscopy. Based on the (1)H NMR line shape analysis of complexes 1 and 2, the intramolecular fluxional process was proposed for these two-coordinate copper(I) complexes. Also, the mixed ligand complex 3 shows that these two different dynamic binding modes of the coordinated HPz'' and H(2)CPz''(2) ligands can proceed simultaneously on a single copper(I) ion.


Asunto(s)
Butanos/química , Cobre/química , Nitrógeno/química , Compuestos Organometálicos/síntesis química , Percloratos/química , Pirazoles/química , Sitios de Unión , Cationes , Hidrógeno/química , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estereoisomerismo , Temperatura , Difracción de Rayos X
17.
Chem Commun (Camb) ; (5): 495-7, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17252106

RESUMEN

The first reversible interconversion process between a one-strand polymeric copper(II) complex {[Cu2(L1)2(ClO4)2](ClO4)2}n (1) and a dicopper(II) helicate [Cu2(L1-2H)2] (2), proceeding via a deprotonation-protonation process, can transduce fluorescence and function as a fluorescent switch simply by introducing a one fiftieth equivalent of coumarine 343 anion, a fluorophore.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...