Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(1): e23923, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38223741

RESUMEN

Objective: Pre-treatment enhanced CT image data were used to train and build models to predict the efficacy of non-small cell lung cancer after conventional radiotherapy and chemotherapy using two classification algorithms, Logistic Regression (LR) and Gaussian Naive Baye (GNB). Methods: In this study, we used pre-treatment enhanced CT image data for region of interest (ROI) sketching and feature extraction. We utilized the least absolute shrinkage and selection operator (LASSO) mutual confidence method for feature screening. We pre-screened logistic regression (LR) and Gaussian naive Bayes (GNB) classification algorithms and trained and modeled the screened features. We plotted 5-fold and 10-fold cross-validated receiver operating characteristic (ROC) curves to calculate the area under the curve (AUC). We performed DeLong's test for validation and plotted calibration curves and decision curves to assess model performance. Results: A total of 102 patients were included in this study, and after a comparative analysis of the two models, LR had only slightly lower specificity than GNB, and higher sensitivity, accuracy, AUC value, precision, and F1 value than GNB (training set accuracy: 0.787, AUC value: 0.851; test set accuracy: 0.772, AUC value: 0.849), and the LR model has better performance in both the decision curve and the calibration curve. Conclusion: CT can be used for efficacy prediction after radiotherapy and chemotherapy in NSCLC patients. LR is more suitable for predicting whether NSCLC prognosis is in remission without considering the computing speed.

2.
Materials (Basel) ; 12(3)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30691009

RESUMEN

This paper investigates the effects of the reinforcement ratio, volume fraction of steel fibers, and prestressing on the uniaxial tensile behavior of carbon textile reinforced mortar (CTRM) through uniaxial tensile tests. The results show that the tensile strength of CTRM specimens increases with the reinforcement ratio, however the textile⁻matrix bond strength becomes weaker and debonding can occur. Short steel fibers are able to improve the mechanical properties of the entire CTRM composite and provide additional "shear resistant ability" to enhance the textile⁻ matrix bond strength, resulting in finer cracks with smaller spacing and width. Investigations into the fracture surfaces using an optical microscope clarify these inferences. Increases in first-crack stress and tensile strength are also observed in prestressed TRM specimens. In this study, the combination of 1% steel fibers and prestressing at 15% of the ultimate tensile strength of two-layer textiles is found to be the optimum configuration, producing the highest first-crack stress and tensile strength and the most reasonable multi-cracking pattern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...