Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 657: 858-869, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091909

RESUMEN

The utilization of solar interface evaporation technology (SIET) for freshwater production from seawater and sewage is a sustainable, green, viable, and promising approach. However, the absorption rate of sunlight, evaporation rates, and high costs still pose large-scale solar steam generation. In this paper, a novel aerogel (named SAS) was prepared by graft copolymerization with sodium alginate (SA), acrylic acid (AA) and sodium humate (SH) in aqueous solution, using N, N'-Methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator, which has high light absorption (90 %), high porosity (87.96 %), superhydrophilicity (35 ms), low thermal conductivity (0.23 W m-1 k-1). The evaporation rate of SAS aerogel can reach up to 1.66 kg m-2h-1 under 1 kW m-2 light intensity, and the reusability and reliability of SAS aerogel are verified by 10 cycles of experiments. The utilization of this SAS aerogel holds significant implications for the design and fabrication of cost-effective, high-performance solar steam evaporation systems, thereby offering promising solutions to address global freshwater shortages and enhance wastewater treatment efficiency.

2.
Small ; : e2307225, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054760

RESUMEN

Ni/Mn-based oxide cathode materials have drawn great attention due to their high discharge voltage and large capacity, but structural instability at high potential causes rapid capacity decay. How to moderate the capacity loss while maintaining the advantages of high discharge voltage remains challenging. Herein, the replacement of Mn ions by Ga ions is proposed in the P2-Na2/3 Ni0.2 Mn0.8 O2 cathode for improving their cycling performances without sacrificing the high discharge voltage. With the introduction of Ga ions, the relative movement between the transition metal ions is restricted and more Na ions are retained in the lattice at high voltage, leading to an enhanced redox activity of Ni ions, validated by ex situ synchrotron X-ray absorption spectrum and X-ray photoelectron spectroscopy. Additionally, the P2-O2 phase transition is replaced by a P2-OP4 phase transition with a smaller volume change, reducing the lattice strain in the c-axis direction, as detected by operando/ex situ X-ray diffraction. Consequently, the Na2/3 Ni0.21 Mn0.74 Ga0.05 O2 electrode exhibits a high discharge voltage close to that of the undoped materials, while increasing voltage retention from 79% to 93% after 50 cycles. This work offers a new avenue for designing high-energy density Ni/Mn-based oxide cathodes for sodium-ion batteries.

3.
Discov Nano ; 18(1): 106, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642818

RESUMEN

Herein, we have constructed a magnetic graphene field-effect transistor biosensor (MGFETs) for highly sensitive detection of cardiac troponin I (CTNI). Graphene films transferred to ITO conductive glass as conductive channels. CTNI aptamer was immobilized onto the graphene film via 1-pyrene-butanoic acid succinimidyl ester (PBASE) to capture CTNI. Magnetic nanobeads (MBs) modified with CTNI antibody were added to the reaction chamber to form an aptamer/CTNI/antibody/magnetic nanobeads sandwich-type complex. We found that the magnetic force exerted on the complex leads to an impedance change of the graphene film. The reason for this result is that the magnetic field exerts an influence on the MBs, causing CTNI aptamer strand to bend, resulting in a change in the distance between the double conductive layers of the graphene film surface and the test solution. With periodic sampling integration, different concentrations of CTNI can be detected with high sensitivity. Due to the stringent recognition capability and high affinity between the CTNI aptamer and CTNI, MGFETs have the potential to detect various types of proteins. Furthermore, MGFETs also have the potential to be utilized for the detection of DNA or specific cells in the future.

4.
Small Methods ; 7(11): e2300635, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572008

RESUMEN

Sodium layered oxides feature in high capacity and diverse composition, however, are plagued by various issues including limited kinetics and interfacial instability with residual alkali. Conventional substitution/doping and heterogeneous coating are promising to tackle the problems of bulk and surface, respectively, but normally insufficient to address both. Herein, a post-substitution strategy is proposed to modify primary sodium-layered-oxide particles that can simultaneously deal with bulk and surficial issues. As a typical example, post Ti-substitution for O3-NaNi1/3 Fe1/3 Mn1/3 O2 is successfully performed by adjusting thermodynamic driving force, resulting in depth-controllable Ti infusion from surface to bulk, as proved by energy dispersive spectroscopy maps collected at the cross-section. Residual alkali species are efficiently diminished and benefited from the surface-to-bulk osmotic reaction, significantly improving Coulombic efficiency. Moreover, remarkable enhancements in reversible capacity (135 mAh g-1 at C/10), rate capability (74% retention at 5 C), and long-term cycling stability (80% retention after 300 cycles at 2 C) are achieved by manipulating gradient-like Ti distribution in a primary particle that brings with increased kinetics and strengthened interfacial stability, surpassing those given by rough heterotic coating and homogeneous Ti-substitution. Such post-substitution is expected to provide a universal strategy to modify primary layered-oxide particles for developing advanced cathode materials of SIBs.

5.
ACS Nano ; 17(13): 12530-12543, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37382902

RESUMEN

Sodium layered oxides always suffer from sluggish kinetics and deleterious phase transformations at deep-desodiation state (i.e., >4.0 V) in O3 structure, incurring inferior rate capability and grievous capacity degradation. To tackle these handicaps, here, a configurational entropy tuning protocol through manipulating the stoichiometric ratios of inactive cations is proposed to elaborately design Na-deficient, O3-type NaxTmO2 cathodes. It is found that the electrons surrounding the oxygen of the TmO6 octahedron are rearranged by the introduction of MnO6 and TiO6 octahedra in Na-deficient O3-type Na0.83Li0.1Ni0.25Co0.2Mn0.15Ti0.15Sn0.15O2-δ (MTS15) with expanded O-Na-O slab spacing, giving enhanced Na+ diffusion kinetics and structural stability, as disclosed by theoretical calculations and electrochemical measurements. Concomitantly, the entropy effect contributes to the improved reversibility of Co redox and phase-transition behaviors between O3 and P3, as clearly revealed by ex situ synchrotron X-ray absorption spectra and in situ X-ray diffraction. Notably, the prepared entropy-tuned MTS15 cathode exhibits impressive rate capability (76.7% capacity retention at 10 C), cycling stability (87.2% capacity retention after 200 cycles) with a reversible capacity of 109.4 mAh g-1, good full-cell performance (84.3% capacity retention after 100 cycles), and exceptional air stability. This work provides an idea for how to design high-entropy sodium layered oxides for high-power density storage systems.

6.
Front Pharmacol ; 14: 1185380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214471

RESUMEN

Background: Lung adenocarcinoma (LUAD) has become a common cause of cancer-related death. Many studies have shown that the basement membrane (BM) is associated with the development of cancer. However, BM-related gene expression and its relationship to LUAD prognosis remains unclear. Methods: BM-related genes from previous studies were used. Clinical and mRNA expression information were obtained from TCGA database. Cox, minimum absolute contraction, and selection operator regression were applied to analyze the selected genes affecting LUAD prognosis. A prognostic-risk model was then established. Furthermore, this study applied Kaplan-Meier analysis to assess the outcomes of high- and low-risk groups, then explored their differences in drug sensitivity. The DSigDB database was used to screen for therapeutic small-molecule drugs. Results: Fourteen prognostic models based on BM-related genes were successfully constructed and validated in patients with LUAD. We also found that independence was a prognostic factor in all 14 BM-based models. Functional analysis showed that the enrichment of BM-related genes mainly originated from signaling pathways related to cancer. The BM-based model also suggested that immune cell infiltration is associated with checkpoints. The low-risk patients may benefit from cyclopamine and docetaxel treatments. Conclusion: This study identified a reliable biomarker to predict survival in patients with LUAD and offered new insights into the function of BM-related genes in LUAD.

7.
Microbiol Res ; 268: 127290, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36571920

RESUMEN

Colletotrichum siamense, a member of Colletotrichum gloeosporioides complex species, is the primary pathogen causing rubber anthracnose, which leads to significant economic loss in natural rubber production. Velvet family proteins are fungal-specific proteins and play an essential role in regulating development and secondary metabolism. In this study, we characterized two velvet proteins CsVosA and CsVelB in C. siamense as the orthologs of VosA and VelB in Aspergillus nidulans. CsVosA is located in the nucleus, and CsVelB displays a localization in both the nucleus and the cytoplasm. Deleting CsvosA or CsvelB results in a slow growth rate, and the CsvelB-knockout mutants also exhibit low mycelial density. CsVosA and CsVelB are involved in regulating chitin metabolism and distribution, leading to the variation in the cell wall integrity of C. siamense. Furthermore, disruption of CsvosA or CsvelB can decrease conidial production and viability, and the ΔCsvosA and ΔCsvelB mutants also lose the ability to produce fruiting bodies. Pathogenicity assays show that deleting CsvosA or CsvelB can lower the virulence, and the two velvet genes are essential for the full virulence of C. siamense. Based on the results of the yeast two-hybrid analysis and bimolecular fluorescence complementation assays, CsVosA can interact with CsVelB and form the complex CsVosA-CsVelB in the conidia of C. siamense, which may play essential roles in maintaining the cell wall integrity and conidial viability. In addition, CsVelB is also involved in regulating melanin production of C. siamense. In conclusion, CsVosA and CsVelB regulate vegetative growth, cell wall integrity, asexual/sexual sporulation, conidial viability and virulence in C. siamense.


Asunto(s)
Colletotrichum , Goma , Virulencia , Esporas Fúngicas , Goma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Sci Bull (Beijing) ; 67(15): 1589-1602, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546287

RESUMEN

Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure. It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures. However, such exploration is hindered by the ambiguous mechanism of material formation. Herein, supported by theoretical simulations and various spectroscopies, we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential, which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions. Consequently, P2/O3 biphasic Na0.7Ni0.2Cu0.1Fe0.2Mn0.5O2-δ with well-designed quaternary composition is successfully obtained, exhibiting much-improved rate capabilities (62 mAh g-1 at 2.4 A g-1) and cycling stabilities (84% capacity retention after 500 cycles) than its single-phase analogues. Furthermore, synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure. This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.

9.
Biomed Res Int ; 2022: 5249576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147635

RESUMEN

Background: With the development of research, the importance of microRNAs (miRNAs) in the occurrence, metastasis, and prognosis of lung adenocarcinoma (LUAD) has attracted extensive attention. This study is aimed at predicting overall survival (OS) results through bioinformatics to identify novel miRNA biomarkers and hub genes. Materials and Methods: The data of LUAD-related miRNA and mRNA samples was downloaded from The Cancer Genome Atlas (TCGA) database. Upon screening and pretreatment of initial data, TCGA data were analyzed using R platform and a series of analytical tools to identify biomarkers with high specificity and sensitivity. Results: 7 miRNAs and 13 hub genes that had strong relation to the overall surviving status were identified in patients with LUAD. The expression of seven miRNAs (hsa-miR-19a-3p, hsa-miR-126-5p, hsa-miR-556-3p, hsa-miR-671-5p, hsa-miR-937-3p, hsa-miR-4664-3p, and hsa-miR-4746-5p) could apparently improve the OS rate of patient with LUAD. The 13 hub genes, namely, CCT6A, CDK5R1, CEP55, DNAJB4, EGLN3, HDGF, HOXC8, LIMD1, MKI67, PCP4L1, PPIL1, SCAI, and STK32A, showed a correlation with the OS status. Conclusion: 7 miRNAs were identified as novel biomarkers for the prognosis of patients with LUAD. This study offered a deeper comprehension of LUAD treatment and prognosis from the molecular level and helped enhance the understanding of the pathogenesis and potential molecular events of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Adenocarcinoma del Pulmón/patología , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular , Chaperonina con TCP-1 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , ARN Mensajero
10.
PLoS One ; 17(3): e0264645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35290415

RESUMEN

As explorations deepen, the role of microRNAs (miRNAs) in lung squamous cell carcinoma (LUSC), from its emergence to metastasis and prognosis, has elicited extensive concern. LUSC-related miRNA and mRNA samples were acquired from The Cancer Genome Atlas (TCGA) database. The data were initially screened and pretreated, and the R platform and series analytical tools were used to identify the specific and sensitive biomarkers. Seven miRNAs and 15 hub genes were found to be closely related to the overall survival of patients with LUSC. Determination of the expression of these miRNAs can help improve the overall survival of LUSC patients. The 15 hub genes correlated with overall survival (OS). The new miRNA markers were identified to predict the prognosis of LUSC. The findings of this study offer novel views on the evolution of precise cancer treatment approaches with high reliability.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroARNs/genética , Pronóstico , Reproducibilidad de los Resultados
11.
Front Pharmacol ; 13: 806995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153782

RESUMEN

Background: Lung squamous cell carcinoma (LUSC) has been a highly malignant tumor with very poor prognosis. It is confirmed that pyroptosis refers to the deaths of cells in a programmed and inflammatory manner. Nevertheless, the correlation between expression of genes related with pyroptosis and their prognosis remains uncertain in LUSC. Methods: Utilization of The Cancer Genome Atlas (TCGA) cohort has been done for evaluating the prognostics of pyroptosis-related genes for survival and constructing a signature with multiple genes. The least absolute shrinkage and selection operator (LASSO) Cox regression was performed for establishing such pyroptosis-related gene signature. Results: Eventually, identification of 28 genes in relation to pyroptosis was made in LUSC and healthy lung tissues. Upon the basis of these differentially-expressed genes (DEGs), the patients of LUSC can be divided into two subtypes. Nine gene signatures were established using LASSO. The surviving rate for low-risk group was apparently greater in contrast with the high-risk group (p < .001). According to our finding, risk score worked as an independent predictive factor of OS among LUSC sufferers in combination with clinical characteristics. In line with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, the enrichment of immunity-related genes and decreasing immunity status among the high-risk group. Conclusion: Genes in relation with pyroptosis played an essential role in tumor immunity, which is capable of predicting the prognosis for LUSCs.

12.
J Phys Chem Lett ; 12(49): 11968-11979, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34881892

RESUMEN

The low oxidation potential of a pre-sodiation cathode additive intrinsically prevents decomposition of the electrolyte. Although the introduction of electron-donating substitution reduces the oxidation potential, the additional molecular weight restricts the output capacity. Herein, as theroretically predicted, the electrochemical oxidation potential of sodium carboxylate is manipulated by the electronic effect and regiochemistry of the functionality, in which the stronger electron-donating substituent, p-π conjugation, and optimized regiochemistry can dramatically lead to the lower potential originated from the elevation of the highest occupied molecular orbital level. Thus, benefiting from the para-NH2 unit accompanied by a conjugated aromatic architecture, molecularly engineered sodium para-aminobenzoate (PABZ-Na) presents a reduced oxidation plateau of 3.45 V. Triggered by the positive compensation merit, sodium-based electrochemical storage systems manifest excellent electrochemical performances. This breakthrough sheds light into the correlation between the electronic effect of the functional group and the oxidation potential of the organic additive, affording in-depth insights into the fundamental guidance of pre-sodiation chemistry.

13.
Biomed Res Int ; 2021: 5953386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712733

RESUMEN

BACKGROUND: Small-cell lung cancer (SCLC) is a major cause of carcinoma-related deaths worldwide. The aim of this study was to identify the key biomarkers and pathways in SCLC using biological analysis. METHODS: Key genes involved in the development of SCLC were identified by downloading three datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the GEO2R online analyzer; for the functional annotation and pathway enrichment analysis of genes, Funrich software was used. Construction of protein-to-protein interaction (PPI) networks was accomplished using the Search Tool for the Retrieval of Interacting Genes (STRING), and network visualization and module identification were performed using Cytoscape. RESULTS: A total of 268 DEGs were ultimately obtained. The enriched functions and pathways of the upregulated DEGs included cell cycle, mitotic, and DNA replication, and the downregulated DEGs were enriched in epithelial-to-mesenchymal transition, serotonin degradation, and noradrenaline. Analysis of significant modules demonstrated that the upregulated genes are primarily concentrated in functions related to cell cycle and DNA replication. Kaplan-Meier analysis of hub genes revealed that they may promote the carcinogenesis and progression of SCLC. The result of ONCOMINE demonstrated that these 10 hub genes were significantly overexpressed in SCLC compared with normal samples. CONCLUSION: Identification of the molecular functions and signaling pathways of participating DEGs can deepen the current understanding of the molecular mechanisms of SCLC. The knowledge gained from this work may contribute to the development of treatment options and improve the prognosis of SCLC in the future.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Anotación de Secuencia Molecular , Pronóstico , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética , Carcinoma Pulmonar de Células Pequeñas/genética
14.
Inorg Chem ; 60(16): 12526-12535, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34337950

RESUMEN

Nanoengineering of metal anode materials shows great potential for energy storage with high capacity. Zero-dimensional nanoparticles are conducive to acquire remarkable electrochemical properties in sodium-ion batteries (SIBs) because of their enlarged surface active sites. However, it is still difficult to fulfill the requirements of practical applications in batteries owing to the deficiency of efficient and scalable preparation approaches of high-performance metal electrode materials. Herein, an electrochemical cathodic corrosion method is proposed for the tunable preparation of nanostructured antimony (Sb) by the introduction of a surfactant, which can efficiently avoid the agglomeration of Sb atom clusters generated from the Zintl compound and further stacking into bulk during the electrochemical process. Subsequently, graphene as the support and conductive matrix is uniformly interspersed by generating Sb nanoparticles (Sb/Gr). Moreover, the reversible crystalline-phase evolution of Sb ⇋ NaSb ⇋Na3Sb for Sb/Gr was studied by in situ X-ray diffraction (XRD). Benefiting from the interconnection of the conductive network, Sb/Gr anodes deliver a high capacity of 635.34 mAh g-1, a retained capacity of 507.2 mAh g-1 after 150 cycles at 0.1 C (1 C = 660 mAh g-1), and excellent rate performance with the capacities of 473.41 and 405.09 mAh g-1 at 2 and 5 C, respectively. The superior cycle stability with a capacity of 346.26 mAh g-1 is achieved after 500 cycles at 2 C. This electrochemical approach offers a new route toward developing metal anodes with designed nanostructures for high-performance SIBs.

15.
ACS Nano ; 15(4): 6061-6104, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33792291

RESUMEN

The practical application of lithium-ion batteries suffers from low energy density and the struggle to satisfy the ever-growing requirements of the energy-storage Internet. Therefore, developing next-generation electrode materials with high energy density is of the utmost significance. There are high expectations with respect to the development of lattice oxygen redox (LOR)-a promising strategy for developing cathode materials as it renders nearly a doubling of the specific capacity. However, challenges have been put forward toward the deep-seated origins of the LOR reaction and if its whole potential could be effectively realized in practical application. In the following Review, the intrinsic science that induces the LOR activity and crystal structure evolution are extensively discussed. Moreover, a variety of characterization techniques for investigating these behaviors are presented. Furthermore, we have highlighted the practical restrictions and outlined the probable approaches of Li-based layered oxide cathodes for improving such materials to meet the practical applications.

16.
Angew Chem Int Ed Engl ; 60(31): 17070-17079, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-33847038

RESUMEN

The use of a sacrificial cathode additive as a pre-metallation method could ensure adequate metal sources for advanced energy storage devices. However, this pre-metallation technique suffers from the precise regulation of decomposition potential of additive. Herein, a molecularly compensated pre-metallation (Li/Na/K) strategy has been achieved through Kolbe electrolysis, in which the electrochemical oxidation potential of a metal carboxylate is manipulated by the bonding energy of the oxygen-metal (O-M) moiety. The electron-donating effect of the substituent and the low charge density of the cation can dramatically weaken the O-M bond strength, further bringing out the reduced potential. Thus, sodium acetate exhibits a superior pre-sodiation feature for sodium-ion battery accompanied with a large irreversible specific capacity of 301.8 mAh g-1 , remarkably delivering 70.6 % enhanced capacity retention in comparison to the additive-free system after 100 cycles. This methodology has been extended to construct a high-performance lithium-ion battery and a lithium/sodium/potassium-ion capacitor.

17.
Ultrasound Med Biol ; 35(11): 1828-44, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19716225

RESUMEN

This paper simultaneously investigated the transient characteristics of integrated backscatter (IBS), attenuation coefficient and bubble activities as time traces before, during and after HIFU treatment, with different HIFU parameters (acoustic power and duty cycle) in both transparent tissue-mimicking phantoms and freshly excised bovine livers. These dynamic changes of acoustic parameters and bubble activities were correlated with the visualization of lesion development selected from photos, conventional B-mode ultrasound images and differential IBS images over the whole procedure of HIFU treatment. Two-dimensional radiofrequency (RF) data were acquired by a modified diagnostic ultrasound scanner to estimate the changes of mean IBS and attenuation coefficient averaged in the lesion region, and to construct the differential IBS images and B-mode ultrasound images simultaneously. Bubble activities over the whole procedure of HIFU treatment were investigated by the passive cavitation detection (PCD) method and the changes in subharmonic and broadband noise were correlated with the transient characteristics of IBS and attenuation coefficient. When HIFU was switched on, IBS and attenuation coefficient increased with the appearance of bubble clouds in the B-mode and differential IBS image. At the same time, the level of subharmonic and broadband noise rose abruptly. Then, there was an initial decrease in the attenuation coefficient, followed by an increase when at lower HIFU power. As the lesion appeared, IBS and attenuation coefficient both increased rapidly to a value twice that of normal. Then the changes in IBS and attenuation coefficient showed more complex patterns, but still showed a slower trend of increases with lesion development. Violent bubble activities were visible in the gel and were evident as strongly echogenic regions in the differential IBS images and B-mode images simultaneously. This was detected by a dramatic high level of subharmonic and broadband noise at the same time. These bubble activities caused fluctuations in IBS and attenuation coefficient during HIFU treatment. After HIFU, IBS and attenuation coefficient decreased gradually accompanied by the fadeout of bright hyperechoic spot in the B-mode and differential IBS image, but were still higher than normal when they were stable. The increases of IBS and attenuation coefficient were greater when using higher acoustic power or a higher duty cycle of the therapeutic emission. These experiments indicated that the bubble activities had the dominant effects on the transient characteristics of IBS and attenuation. This should be taken into consideration when using the dynamic acoustic-property changes for the potentially real-time monitoring imaging of HIFU treatment.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Animales , Bovinos , Diseño de Equipo , Ultrasonido Enfocado de Alta Intensidad de Ablación/instrumentación , Interpretación de Imagen Asistida por Computador , Hígado/diagnóstico por imagen , Fantasmas de Imagen , Transductores , Ultrasonografía , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...