Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Heliyon ; 10(7): e29098, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601662

RESUMEN

Objectives: Our previous studies revealed the significant roles of FK506-binding protein 4 (FKBP4) in tumorigenesis, however, there has been no pan-cancer analysis of FKBP4. Using bioinformatics, the current study reported the expression and prognostic role of FKBP4, and the correlation between FKBP4 and clinicopathological parameters, methylation, molecular network, immunological traits and drug sensitivity. Methods: RNA sequencing data, somatic mutation, and related clinical information were obtained from TCGA using UCSC Xena. The association between FKBP4 expression and clinical features was assessed using TISIDB. The relationships between FKBP4 expression and tumour stage, OS, DSS, DFS, and PFS were analysed using univariate cox regression analysis. The radar plots for TMB and MSI were obtained using "Fmsb" R package. UALCAN was used to explore the effect of FKBP4 methylation on tumour and normal samples. CBioportal was used to analyse copy number mutations in FKBP4 Gene expression and drug sensitivity data were downloaded from the CellMiner database. GO analysis was performed for the high and the low expression of FKBP4 compared with the median level of FKBP4 using clusterProfiler4.0. Results: FKBP4 expression is significantly upregulated in various types of cancers. Cox regression analysis showed that high FKBP4 levels were correlated with poor OS, DSS, DFS, and PFS in most patients with cancer. Methylation of FKBP4 DNA was upregulated in most cancers, and FKBP4 expression is positively associated with transmethylase expression. FKBP4 and its copy were significantly associated with the expression of immune-infiltrating cells, immune checkpoint genes, immune modulators, TMB, MMR, and MSI. FKBP4 expression levels significantly correlated with 16 different drug sensitivities (all p < 0.05). Conclusions: Our pan-cancer bioinformatic analysis revealed a potential mechanism underlying the effects of FKBP4 on the prognosis and progression of various cancers.

2.
J Phys Chem Lett ; 15(15): 4076-4081, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38587414

RESUMEN

Elucidating the key factors that affect the localized excitons (LEs) photoluminescence (PL) in lead-free metal halide nanocrystals (NCs) is important for their optoelectronic applications. However, the effect of A-site cations on LEs based PL is not well understood. Herein, we varied the A-site cation ratio (Rb/Cs) to investigate the influence on LEs based PL in manganese-doped zinc chloride NCs. Through time-resolved photoluminescence (TR-PL) spectra and density functional theory (DFT) calculations, we discovered that Cl vacancy is energetically more favorable in Mn2+-doped Rb3ZnCl5 NCs compared to Mn2+-doped Cs3ZnCl5 NCs. The higher concentration of Cl vacancy increases the nonradiative recombination process in Rb3ZnCl5:Mn2+ NCs, ultimately determining the PL efficiency. This research enhances the understanding of the A-site cation effect on LEs-based PL in lead-free metal halide NCs.

3.
Angew Chem Int Ed Engl ; 63(8): e202319969, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179817

RESUMEN

Most of current metal halide materials, including all inorganic and organic-inorganic hybrids, are crystalline materials with poor workability and plasticity that limit their application scope. Here, we develop a novel class of materials termed polymeric metal halides (PMHs) through introducing polycations into antimony-based metal halide materials as A-site cations. A series of PMHs with orange-yellow broadband emission and large Stokes shift originating from inorganic self-trapped excitons are successfully prepared, which meanwhile exhibit the excellent processability and formability of polymers. The versatility of these PMHs is manifested as the broad choices of polycations, the ready extension to manganese- and copper-based halides, and the tolerance to molar ratios between polycations and metal halides in the formation of PMHs. The merger of polymer chemistry and inorganic chemistry thus provides a novel generic platform for the development of metal halide functional materials.

4.
Chem Sci ; 14(43): 12194-12204, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969573

RESUMEN

Carbon dots (CDs) have attracted significant attention in the energy, environment, and biology fields due to their exceptional physicochemical properties. However, owing to the multifarious precursors and complex reaction mechanisms, the production of carbon dots from organic molecules is still a mysterious process. Inspired by the color change of sodium hydroxide ethanol solution after standing for some time, in this work, we thoroughly investigated the reaction mechanism from alcohol molecules to carbon dots through a lot of experiments and theoretical calculations, and it was found that the rate-controlling reaction is the formation of aldehydes, and it is also confirmed that there is a self-catalysis reaction, which can accelerate the conversion from alcohol to aldehyde, further facilitating the final formation of CDs. After the rate-controlling reaction of alcohol to aldehyde, under strongly alkaline conditions, an aldol reaction occurs to form unsaturated aldehydes, followed by further condensation and polymerization reactions to form long carbon chains, which are cross-linked and dehydrated to form carbon dots with a carbon core and surface functional groups. Additionally, it is found that the reaction can be largely accelerated with the assistance of electricity, which indicates the great prospect of industrial production. Furthermore, the obtained CDs with rich functional groups can be utilized as electrolyte additives to optimize the deposition behavior of Na metal, manifesting great potential towards safe and stable Na metal batteries.

5.
ACS Nano ; 17(21): 22082-22094, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37916798

RESUMEN

Fluorinated carbon dots (FCDs) have garnered interest owing to their distinct physicochemical properties. Nevertheless, intricate synthesis procedures and quite low fluorine doping levels limit its development and application. Herein, we propose a facile approach based on the Claisen-Schmidt reaction to realize gram-scale synthesis of highly fluorinated carbon dots (up to 20.79 at. %) at room temperature and atmospheric pressure, and a comprehensive exploration of the specific reaction mechanism is conducted. Furthermore, in consideration of the high fluorine content, good dispersibility, and compatibility with polymer electrolyte, the synthesized FCDs are utilized as an additive for PEO-based solid electrolytes of a Li battery to improve its ionic conductivity, interface stability, and mechanical properties. The introduction of FCDs can not only reduce the crystallinity of PEO and enhance the interaction of polymer chains, but also facilitate the establishment of uninterrupted pathways and in situ fluorination at the interface, which is substantiated by both theoretical calculations and experimental findings. As a result, the lithium symmetrical battery can operate stably for 1000 h at a current density of 0.4 mA cm-2. Simultaneously, the LiFePO4/Li battery utilizing the composite electrolyte exhibits a capacity of 130.3 mAh g-1 over 300 cycles while maintaining a capacity retention rate of 95.10%. This study develops a strategy for synthesizing highly fluorinated carbon dots, which demonstrate a useful influence on PEO electrolytes, thus boosting the advancement of FCDs and solid-state batteries.

6.
Front Oncol ; 13: 1145332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795446

RESUMEN

Objective: To explore the advantages of dosimetry and the treatment efficiency of tangent-arc technology in deep inspiration breath-hold radiotherapy for breast cancer. Methods: Forty patients with left-sided breast cancer who were treated in our hospital from May 2020 to June 2021 were randomly selected and divided into two groups. The first group's plan was a continuous semi-arc that started at 145° ( ± 5°) and stopped at 325° ( ± 5°). The other group's plan, defined as the tangent-arc plan, had two arcs: the first arc started at 145° ( ± 5°) and stopped at 85° ( ± 5°), and the second arc started at 25° ( ± 5°) and stopped at 325° ( ± 5°). We compared the target dose, dose in organs at risk (OARs), and treatment time between the two groups. Results: The target dose was similar between the continuous semiarc and tangent-arc groups. The V5 of the right lung was significantly different between the two groups (Dif 5.52, 95% confidence interval 1.92-9.13, t=3.10, P=0.004), with the patients in the continuous semi-arc and tangent-arc groups having lung V5 values of (9.16 ± 1.62)%, and (3.64 ± 0.73)%, respectively. The maximum dose to the spinal cord was (1835.88 ± 222.17) cGy in the continuous semi-arc group and (599.42 ± 153.91) cGy in the tangent-arc group, yielding a significant difference between the two groups (Dif 1236.46, 95% confidence interval 689.32-1783.6, t=4.57, P<0.001). The treatment times was (311.70 ± 60.45) s for patients in the continuous semi-arc group and (254.66 ± 40.73) s for patients in the tangent-arc group, and there was a significant difference in the mean number of treatment times between the two groups (Dif 57.04, 95% confidence interval 24.05-90.03, t=3.5, P=0.001). Conclusion: Both the continuous semi-arc and tangent-arc plans met the clinical prescription dose requirements. The OARs received less radiation with the tangent-arc plan than the continuous semi-arc plan, especially for the lung (measured as V5) and the spinal cord (measured as the maximum dose). Tangent-arc plan took significantly less time than the continuous semi-arc, which can greatly improve treatment efficiency. Therefore, tangent-arc plans are superior continuous semi-arc plans for all cases.

7.
J Appl Clin Med Phys ; 24(11): e14116, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37538022

RESUMEN

Personalized precision irradiation of patients with left-sided breast cancer is possible by examining the setup errors of 3- and 4-mm gated window widths for those treated with deep inspiration breath-hold (DIBH) treatment. An observational study was performed via a retrospective analysis of 250 cone-beam computed tomography (CBCT) images of 60 left-breast cancer patients who underwent whole-breast radiotherapy with the DIBH technique between January 2021 and 2022 at our hospital. Among them, 30 patients had a gated window width of 3 mm, while the remaining 30 had a gated window width of 4 mm; both groups received radiotherapy using DIBH technology. All patients underwent CBCT scans once a week, and the setup errors in the left-right (x-axis), inferior-superior (y-axis), and anterior-posterior (z-axis) directions were recorded. The clinical-to-planning target volume (CTV-PTV) margins of the two gating windows were calculated using established methods. The setup error in the Y direction was 1.69 ± 1.33 mm for the 3-mm - wide gated window and 2.42 ± 3.02 mm for the 4-mm - wide gated window. The two groups had statistically significant differences in the overall mean setup error (Dif 0.7, 95% CI 0.15-1.31, t = 2.48, p= 0.014). The Z-direction setup error was 2.32 ± 2.12 mm for the 3-mm - wide gated window and 3.15 ± 3.34 mm for the 4-mm - wide gated window. The overall mean setup error was statistically significant between the two groups (Dif 0.8, 95% CI 0.13-1.53, t= 2.34, p = 0.020). There was no significant difference in the X-direction setup error (p > 0.05). Therefore, the CTV-PTV margin values for a 3-mm gated window width in the X, Y, and Z directions are 5.51, 5.15, and 7.28 mm, respectively; those for a 4-mm gated window width in the X, Y, and Z directions are 5.52, 8.16, and 10.21 mm, respectively. The setup errors of the 3-mm - wide gating window are smaller than those of the 4-mm - wide gating window in the three dimensions. Therefore, when the patient's respiratory gating window width is reduced, the margin values of CTV-PTV can be reduced to increase the distance between the PTV and the organs at risk (OARs), which ensures adequate space for the dose to decrease, resulting in lower dose exposure to the OARs (heart, lungs, etc.), thus sparing the OARs from further damage. However, some patients with poor pulmonary function or unstable breathing amplitudes must be treated with a slightly larger gating window. Therefore, this study lays a theoretical basis for personalized precision radiotherapy, which can save time and reduce manpower in the delivery of clinical treatment to a certain extent. Another potential benefit of this work is to bring awareness to the potential implications of a slightly larger gating window during treatment without considering the resulting dosimetric impact.


Asunto(s)
Neoplasias de la Mama , Neoplasias de Mama Unilaterales , Humanos , Femenino , Contencion de la Respiración , Estudios Retrospectivos , Neoplasias de la Mama/radioterapia , Tomografía Computarizada por Rayos X/métodos , Respiración , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Neoplasias de Mama Unilaterales/radioterapia
8.
Adv Mater ; 35(38): e2303193, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37267091

RESUMEN

Solid-state batteries can ensure high energy density and safety in lithium metal batteries, while polymer electrolytes are plagued by slow ion kinetics and low selective transport of Li+ . Metal-organic frameworks (MOFs) are proposed as emerging fillers for solid-state poly(ethylene oxide)(PEO) electrolytes, however, developing functionalized MOFs and understanding their roles on ion transfer has proven challenging. Herein, combining computational and experimental results, the functional group regulation in MOFs can effectively change surficial charge distribution and limit anion movement is revealed, providing a potential solution to these issues. Specifically, functionalized 2D MOF sheets are designed through molecular engineering to construct high-performance composite electrolytes, where the electron-donating effect of substituents in 2D-MOFs effectively limits the movement of ClO4 - and promotes mechanical properties and ion migration numbers (0.36 up to 0.64) of PEO. As a result, Li/Li cells with composite electrolyte exhibit superior cyclability for 1000 h at a current density of 0.2 mA cm-2 . Meanwhile, the solid LiFePO4 /Li battery delivers highly reversible capacities of 148.8 mAh g-1 after 200 cycles. These findings highlight a new approach for anion confinement through the use of functional group electronic effects, leading to enhanced ionic conductivity, and a feasible direction for high-performance solid-state batteries.

9.
PLoS One ; 18(5): e0285860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200401

RESUMEN

Currently, platforms (such as Amazon.com and JD.com) are gradually transitioning from pure resellers to platforms providing hybrid channel structures. In a hybrid channel, the reselling channel and the agency channel on the platform are simultaneously used. Therefore, according to the agent who sells through the agency channel (manufacturer or third-party retailer), two kinds of hybrid channel structurers can be selected by the platform. At the same time, due to the intense competition caused by the hybrid channel structure, platforms take the initiative to implement the product quality distribution strategy in which different quality products are sold through various retailing channels. Thus, from the perspective of platforms, how to coordinate the selection of hybrid channel structures and the implementation of the product quality distribution strategy is a significant issue that has been overlooked in existing literature. This paper proposes game-theoretic models to investigate whether a platform should choose "which" hybrid channel structure to use and decide "whether" to adopt the product quality distribution strategy. Our analysis shows that the game equilibrium is affected by the commission rate, the product differentiation level, and the production cost. More specifically, first, it is interestingly found that if the product differentiation level exceeds a particular threshold, the product quality distribution strategy can negatively influence the retailer to abandon the hybrid retailing mode. In contrast, the manufacturer continues to sell through the agency channel as a part of the product distribution plan. Second, regardless of the channel configuration, we find that the platform chooses to increase the order quantity with the help of the product distribution plan. Third, contrary to popular belief, the product quality distribution strategy can only benefit the platform when the third-party retailer participates in hybrid retailing with a suitable commission rate and product differentiation level. Fourth, the platform should make decisions on the above two strategies concurrently; otherwise, agency sellers (manufacturer or third-party retailer) will oppose the product quality distribution strategy. Our key findings can assist stakeholders in making strategic decisions about hybrid retailing modes and product distribution.


Asunto(s)
Comercio , Mercadotecnía , Toma de Decisiones , Costos y Análisis de Costo , Modelos Teóricos
10.
Small ; 19(33): e2301275, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37081376

RESUMEN

Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+ , GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability.

11.
Biomimetics (Basel) ; 7(4)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36546935

RESUMEN

The foot is an important part of humanoid robot locomotion that can help with shock absorption while making contact with the ground. The mechanism of the foot directly affects walking stability. A novel foot mechanism inspired by the toes of felids is proposed. The foot has four bionic modules with soft pads and sharp claws installed at the four corners of a flat foot. This foot can reduce the impact experienced during foot landing and increase the time that the foot is in contact with the ground, which can improve the adaptability of the robot to different ground surface conditions with different levels of stiffness. The main structure of the bionic module is a four-bar linkage consisting of a slide way and a spring. Furthermore, the length of the four-bar linkage and the posture of the claw during insertion into soft ground are optimized to improve the stability and buffering performance. The validity of the proposed foot mechanism has been proved in simulations.

12.
Small Methods ; 6(6): e2200245, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460218

RESUMEN

Carbon dots (CDs) are considered as excellent structural regulator for metal oxides (MOs) due to their abundant functional groups, superior dispersibility, and ultrasmall size (<10 nm). Herein, a new approach is proposed to construct porous pomegranate-like MOs/CDs composite based on the CDs-induced in situ growth mechanism of ion adsorption-multipoint surface nucleation-crosslinking agglomeration. The proposed methodology is successfully applied to prepare SnO2 /CDs, Cu2 O/CDs, and Fe2 O3 /CDs composites, respectively, demonstrating its universality to metal oxides. Taking SnO2 /CDs composite as a case study for anode material in lithium-ion batteries, it exhibits high lithium storage capacity, excellent cycling stability, and a special feature of capacity increase upon cycling. This study provides a new idea for the design of metal oxides materials tuned by CDs and broadens the application of CDs in the field of material synthesis.

13.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2915-2923, 2021 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-34472308

RESUMEN

Antimicrobial peptides are the most promising alternatives to antibiotics. However, the strategy of producing antimicrobial peptides by recombinant technology is complicated and expensive, which is not conducive to the large-scale production. Oxysterlin 1 is a novel type of cecropin antimicrobial peptide mainly targeting on Gram-negative bacteria and is of low cytotoxicity. In this study, a simple and cost-effective method was developed to produce Oxysterlin 1 in Escherichia coli. The Oxysterlin 1 gene was cloned into a plasmid containing elastin-like polypeptide (ELP) and protein splicing elements (intein) to construct the recombinant expression plasmid (pET-ELP-I-Oxysterlin 1). The recombinant protein was mainly expressed in soluble form in E. coli, and then the target peptide can be purified with a simple salting out method followed by pH changing. The final yield of Oxysterlin 1 was about 1.2 mg/L, and the subsequent antimicrobial experiment showed the expected antimicrobial activity. This study holds promise for large-scale production of antimicrobial peptides and the in-depth study of its antimicrobial mechanism.


Asunto(s)
Elastina , Escherichia coli , Escherichia coli/genética , Inteínas , Péptidos/genética , Péptidos/farmacología , Proteínas Citotóxicas Formadoras de Poros , Proteínas Recombinantes de Fusión/genética
14.
Front Microbiol ; 12: 666761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421836

RESUMEN

Sustainable management of plant pathogens is becoming more challenging, and novel solutions are needed. Plant biologically active secondary metabolites are important sources of novel crop protection chemistry. Effective individual compounds of these natural products have the potential to be successful new agrochemicals. In this study, we identified lauric acid (LA) from soybean defense leaf volatiles. LA inhibited the growth of Phytophthora sojae, the causal agent of soybean root rot. It influenced mycelial development, sporangium formation, and zoospore generation and germination by damaging the P. sojae cell membrane. Additionally, we showed that LA and several of its derivatives, such as glycerol monolaurate (GML), had similar biological activities. Both LA and GML were safe to soybean plants when used at less than 0.3 g a.i./plant and could promote soybean growth, implying their potential as eco-friendly biological control agents.

15.
Analyst ; 146(5): 1760-1771, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33475106

RESUMEN

Inert metals are of much importance and play a key role in modern industrial manufacturing. The analytical techniques of inert metals remain challenging. In particular, the mass spectrometry of inert metal elements is yet to be further developed, which also limits the contemporary conceptual in situ analysis of inert metals. As the representative element, the mass spectral detection of palladium is critical and of far-reaching significance. Herein, we developed a mass spectrometry method, which can be used for the high-speed and in situ analysis of palladium, and even for other inert metals. Combining the line ion trap mass spectrometer with the versatile ambient ionization source, a novel kilowatt microwave plasma torch (MPT) can be used to obtain the fully characteristic MPT mass spectra of palladium. Detailed multistage tandem mass spectra show that the general form of target ions is [M(O2)x(NO)mNy(NO2)n]- for the negative ion mode and [M(H2O)x(NO2)y(N2)m]+ for the positive ion mode. Moreover, the formation and evolution of these palladium complex ions were reasonably derived based on the analysis of MPT background mass spectra. This mass spectrometric technique is also suitable for the determination of the palladium-containing solution in the sub-trace level. Semi-quantitative results showed that the detecting ability for palladium in the negative mode is better than that of the positive mode. Under the negative ion mode, the limit of detection (LOD) for m/z 259 were evaluated to be 0.5 µg L-1 under the optimized conditions of the negative mode, with the linear range of 1-100 µg·L-1 (R2 ≥ 0.9985) and the relative standard deviation (RSD, n = 11) being in the range of 1.20%-5.98% (refer to Table S3). Our experimental data showed that MPT-MS was a promising technique for providing another alternative in the on-site analysis of liquid samples and other intimate relevant fields, as the supplement of ICP-MS for the detection of inert metal elements. On the other hand, this work will also certainly promote the more broad applications of platinum-group elements (PGE) in modern science and industry.

16.
Plant Physiol Biochem ; 155: 605-612, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32846396

RESUMEN

Hydrogen sulfide (H2S), a small gaseous signalling molecule, plays a pivotal role in the plant response to heavy metal stress. Here, we revealed a novel mechanism of Isatis indigotica resistance to cadmium (Cd) stress, in which H2S promotes Cd accumulation in the root and decreases the long-distance transport of Cd from the root to shoot. Cd significantly inhibited Isatis indigotica growth and induced the endogenous H2S level. Application of NaHS (a H2S donor) alleviated the effects of Cd. NaHS restriction of the translocation factor of Cd, elevated the Cd content in roots and depressed the Cd content in shoots. Cd stress decreased the cellulose and pectin contents in the cell wall, but NaHS restored the effect of Cd on the cell wall components. The Cd2+ fluxes were detected by noninvasive microtest technology (NMT). The data showed that NaHS pretreatment decreased the Cd2+ influx and proportion of the Cd content in organelles. We analyzed the effect of NaHS on the metallothionein and phytochelatin (PC) contents in roots and found that the PC and metallothionein1A (MT1A) contents were induced by NaHS. Additionally, the chemical forms of Cd2+ were changed by NaHS. Thus, H2S alters the content of cell wall component, improves Cd accumulation in the cell wall, depresses Cd2+ transmembrane movement, induces the synthesis of metallothioneins and decreases the toxicity of intracellular Cd. Our finding has great value to reduce the loss of Isatis indigotica resulted by heavy metals stress.


Asunto(s)
Cadmio/metabolismo , Pared Celular/metabolismo , Sulfuro de Hidrógeno/metabolismo , Isatis/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Gasotransmisores/metabolismo
17.
Sensors (Basel) ; 19(8)2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027292

RESUMEN

Conventional pattern-recognition algorithms for surface electromyography (sEMG)-based hand-gesture classification have difficulties in capturing the complexity and variability of sEMG. The deep structures of deep learning enable the method to learn high-level features of data to improve both accuracy and robustness of a classification. However, the features learned through deep learning are incomprehensible, and this issue has precluded the use of deep learning in clinical applications where model comprehension is required. In this paper, a generative flow model (GFM), which is a recent flourishing branch of deep learning, is used with a SoftMax classifier for hand-gesture classification. The proposed approach achieves 63.86 ± 5.12 % accuracy in classifying 53 different hand gestures from the NinaPro database 5. The distribution of all 53 hand gestures is modelled by the GFM, and each dimension of the feature learned by the GFM is comprehensible using the reverse flow of the GFM. Moreover, the feature appears to be related to muscle synergy to some extent.

18.
Plant Physiol ; 178(2): 936-949, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30166418

RESUMEN

Hydrogen sulfide (H2S) is an important signaling molecule in plants. Our previous report suggested that H2S signaling affects the actin cytoskeleton and root hair growth. However, the underlying mechanisms of its effects are not understood. S-Sulfhydration of proteins is regulated directly by H2S, which converts the thiol groups of cysteine (Cys) residues to persulfides and alters protein function. In this work, we studied the effects of S-sulfhydration on actin dynamics in Arabidopsis (Arabidopsis thaliana). We generated transgenic plants overexpressing the H2S biosynthesis-related genes l-CYSTEINE DESULFHYDRASE (LCD) and d-CYSTEINE DESULFHYDRASE in the O-acetylserine(thiol)lyase isoform a1 (oasa1) mutant and Columbia-0 backgrounds. The H2S content increased significantly in overexpressing LCD/oasa1 plants. The density of filamentous actin (F-actin) bundles and the F-actin/globular actin ratio decreased in overexpressing LCD/oasa1 plants. S-Sulfhydration also was enhanced in overexpressing LCD/oasa1 plants. An analysis of actin dynamics suggested that S-sulfhydration inhibited actin polymerization. We also found that ACTIN2 (ACT2) was S-sulfhydrated at Cys-287. Cys-287 is adjacent to the D-loop, which acts as a central region for hydrophobic and electrostatic interactions and stabilizes F-actin filaments. Overaccumulation of H2S caused the depolymerization of F-actin bundles and inhibited root hair growth. Introduction of ACT2 carrying a Cys-287-to-Ser mutation into an act2-1 mutant partially suppressed H2S-dependent inhibition of root hair growth. We conclude that H2S regulates actin dynamics and affects root hair growth.


Asunto(s)
Actinas/metabolismo , Arabidopsis/enzimología , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cistationina gamma-Liasa/genética , Expresión Génica , Mutación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Polimerizacion/efectos de los fármacos
19.
Oxid Med Cell Longev ; 2018: 7858094, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30159118

RESUMEN

A polyphenol-enriched fraction (PEF) from Acalypha wilkesiana, whose leaves have been traditionally utilized for the treatment of diverse medical ailments, was investigated for the anti-inflammatory effect and molecular mechanisms by using lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages and acetaminophen- (APAP-) induced liver injury mouse model. Results showed that PEF significantly attenuated LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in RAW 264.7 macrophages. PEF also reduced the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1ß, and IL-6 in LPS-stimulated RAW 264.7 macrophages. Moreover, PEF potently inhibited LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) as well as the activation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α). In vivo, PEF pretreatment ameliorated APAP-induced liver injury and hepatic inflammation, as presented by decreased hepatic damage indicators and proinflammatory factors at both plasma and gene levels. Additionally, PEF pretreatment remarkably diminished Toll-like receptor 3 (TLR3) and TLR4 expression and the subsequent MAPKs and NF-κB activation. HPLC analysis revealed that two predominantly polyphenolic compounds present in PEF were geraniin and corilagin. These results indicated that PEF has an anti-inflammatory effect, and its molecular mechanisms may be involved in the inactivation of the TLR/MAPK/NF-κB signaling pathway, suggesting the therapeutic potential of PEF for inflammatory diseases.


Asunto(s)
Acalypha/química , Acetaminofén/efectos adversos , Antiinflamatorios/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/complicaciones , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Extractos Vegetales/química , Animales , Antiinflamatorios/farmacología , Ratones , Polifenoles
20.
Malar J ; 11: 117, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22513123

RESUMEN

BACKGROUND: Malaria is a significant threat to population health in the border areas of Yunnan Province, China. How to accurately measure malaria transmission is an important issue. This study aimed to examine the role of slide positivity rates (SPR) in malaria transmission in Mengla County, Yunnan Province, China. METHODS: Data on annual malaria cases, SPR and socio-economic factors for the period of 1993 to 2008 were obtained from the Center for Disease Control and Prevention (CDC) and the Bureau of Statistics, Mengla, China. Multiple linear regression models were conducted to evaluate the relationship between socio-ecologic factors and malaria incidence. RESULTS: The results show that SPR was significantly positively associated with the malaria incidence rates. The SPR (ß = 1.244, p = 0.000) alone and combination (SPR, ß = 1.326, p < 0.001) with other predictors can explain about 85% and 95% of variation in malaria transmission, respectively. Every 1% increase in SPR corresponded to an increase of 1.76/100,000 in malaria incidence rates. CONCLUSION: SPR is a strong predictor of malaria transmission, and can be used to improve the planning and implementation of malaria elimination programmes in Mengla and other similar locations. SPR might also be a useful indicator of malaria early warning systems in China.


Asunto(s)
Métodos Epidemiológicos , Malaria/epidemiología , Malaria/transmisión , Microscopía/métodos , Plasmodium/citología , China/epidemiología , Humanos , Incidencia , Malaria/diagnóstico , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...