Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Regen Med ; 9(1): 13, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519518

RESUMEN

Neural progenitor cells (NPCs) derived from human pluripotent stem cells(hPSCs) provide major cell sources for repairing damaged neural circuitry and enabling axonal regeneration after spinal cord injury (SCI). However, the injury niche and inadequate intrinsic factors in the adult spinal cord restrict the therapeutic potential of transplanted NPCs. The Sonic Hedgehog protein (Shh) has crucial roles in neurodevelopment by promoting the formation of motorneurons and oligodendrocytes as well as its recently described neuroprotective features in response to the injury, indicating its essential role in neural homeostasis and tissue repair. In this study, we demonstrate that elevated SHH signaling in hNPCs by inhibiting its negative regulator, SUFU, enhanced cell survival and promoted robust neuronal differentiation with extensive axonal outgrowth, counteracting the harmful effects of the injured niche. Importantly, SUFU inhibition in NPCs exert non-cell autonomous effects on promoting survival and neurogenesis of endogenous cells and modulating the microenvironment by reducing suppressive barriers around lesion sites. The combined beneficial effects of SUFU inhibition in hNPCs resulted in the effective reconstruction of neuronal connectivity with the host and corticospinal regeneration, significantly improving neurobehavioral recovery in recipient animals. These results demonstrate that SUFU inhibition confers hNPCs with potent therapeutic potential to overcome extrinsic and intrinsic barriers in transplantation treatments for SCI.

2.
Ann Neurol ; 95(5): 966-983, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450773

RESUMEN

OBJECTIVE: Neuropathic pain poses a persistent challenge in clinical management. Neuromodulation has emerged as a last-resort therapy. Conventional spinal cord stimulation (Con SCS) often causes abnormal sensations and provides short analgesia, whereas high-frequency spinal cord stimulation (HF SCS) is a newer therapy that effectively alleviates pain without paresthesia. However, the modes of action of 10kHz HF SCS (HF10 SCS) in pain relief remain unclear. To bridge this knowledge gap, we employed preclinical models that mimic certain features of clinical SCS to explore the underlying mechanisms of HF10 SCS. Addressing these issues would provide the scientific basis for improving and evaluating the effectiveness, reliability, and practicality of different frequency SCS in clinical settings. METHODS: We established a preclinical SCS model to examine its effects in a neuropathic pain rat model. We conducted bulk and single-cell RNA sequencing in the spinal dorsal horn (SDH) to examine cellular and molecular changes under different treatments. We employed genetic manipulations through intrathecal injection of a lentiviral system to explore the SCS-mediated signaling axis in pain. Various behavioral tests were performed to evaluate pain conditions under different treatments. RESULTS: We found that HF10 SCS significantly reduces immune responses in the SDH by inactivating the Kaiso-P2X7R pathological axis in microglia, promoting long-lasting pain relief. Targeting Kaiso-P2X7R in microglia dramatically improved efficacy of Con SCS treatment, leading to reduced neuroinflammation and long-lasting pain relief. INTERPRETATION: HF10 SCS could improve the immunopathologic state in the SDH, extending its benefits beyond symptom relief. Targeting the Kaiso-P2X7R axis may enhance Con SCS therapy and offer a new strategy for pain management. ANN NEUROL 2024;95:966-983.


Asunto(s)
Inflamación , Microglía , Neuralgia , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7 , Estimulación de la Médula Espinal , Animales , Neuralgia/terapia , Neuralgia/metabolismo , Ratas , Microglía/metabolismo , Estimulación de la Médula Espinal/métodos , Masculino , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Inflamación/terapia , Modelos Animales de Enfermedad
3.
Anesth Analg ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37968831

RESUMEN

BACKGROUND: Chronic orofacial pain (COP) therapy is challenging, as current medical treatments are extremely lacking. Moutan Cortex (MC) is a traditional Chinese medicine herb widely used for chronic inflammatory diseases. However, the mechanism behind MC in COP therapy has not been well-established. The purpose of this study was to identify the active ingredients of MC and their specific underlying mechanisms in COP treatment. METHODS: In this study, the main active ingredients and compound-target network of MC in COP therapy were identified through network pharmacology and bioinformatics analysis. Adult male Sprague-Dawley rats received oral mucosa lipopolysaccharide (LPS) injection to induce COP. Pain behaviors were evaluated by orofacial mechanical nociceptive assessment after intraganglionar injection. In vitro inflammatory cytokines in LPS-pretreated human periodontal ligament stem cells (hPDLSCs) and rat primary cultural trigeminal ganglion (TG) neurons were quantified by real-time quantitative polymerase chain reaction (RT-qPCR). Schrödinger software was used to verify the molecular docking of quercetin and critical targets. Whole-cell recording electrophysiology was used to evaluate the effect of quercetin on voltage-gated sodium (Na v ) channel in rat TG neurons. RESULTS: The assembled compound-target network consisted of 4 compounds and 46 targets. As 1 of the active components of MC correlated with most related targets, quercetin alleviated mechanical allodynia in LPS-induced rat model of COP (mechanical allodynia threshold median [interquartile range (IQR) 0.5 hours after drug administration: vehicle 1.3 [0.6-2.0] g vs quercetin 7.0 [6.0-8.5] g, P = .002). Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response and membrane functions play essential roles in MC-COP therapy. Five of the related targets were identified as core targets by protein-protein interaction analysis. Quercetin exerted an analgesic effect, possibly through blocking Na v channel in TG sensory neurons (peak current density median [IQR]: LPS -850.2 [-983.6 to -660.7] mV vs LPS + quercetin -589.6 [-711.0 to -147.8] mV, P = .006) while downregulating the expression level of proinflammatory cytokines-FOS (normalized messenger RNA [mRNA] level mean ± standard error of mean [SEM]: LPS [2. 22 ± 0.33] vs LPS + quercetin [1. 33 ± 0.14], P = .034) and TNF-α (normalized mRNA level mean ± SEM: LPS [8. 93 ± 0.78] vs LPS + quercetin [3. 77 ± 0.49], P < .0001). CONCLUSIONS: Identifying Na v as the molecular target of quercetin clarifies the analgesic mechanism of MC, and provides ideas for the development of novel selective and efficient chronic pain relievers.

4.
Adv Sci (Weinh) ; 10(20): e2205804, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37296073

RESUMEN

Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage. The enhanced neurogenic potency is partly attributed to the reduction of glycolysis. These neurogenic and metabolic properties retain after transplantation of hNSCs with reduced SOX9 expression in a contusive SCI rat model without the need for growth factor-enriched matrices. Importantly, the grafts exhibit excellent integration properties, predominantly differentiate into motor neurons, reduce glial scar matrix accumulation to facilitate long-distance axon growth and neuronal connectivity with the host as well as dramatically improve locomotor and somatosensory function in recipient animals. These results demonstrate that hNSCs with half SOX9 gene dosage can overcome extrinsic and intrinsic barriers, representing a powerful therapeutic potential for transplantation treatments for SCI.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Neuronas/metabolismo , Neurogénesis , Cicatrización de Heridas , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
5.
Glia ; 71(4): 1099-1119, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36579750

RESUMEN

Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Animales , Ratas , Acetilación , Astrocitos/patología , Neuropatías Diabéticas/patología , Histona Desacetilasas/genética
6.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499167

RESUMEN

Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source for phytochemical compound synthesis. Here, we identified a natural product, Narirutin, a flavonoid compound isolated from the Citrus unshiu, showing antinociceptive effects in rodent models of neuropathic pain. Using calcium imaging, whole-cell electrophysiology, western blotting, and immunofluorescence, we uncovered a molecular target for Narirutin's antinociceptive actions. We found that Narirutin (i) inhibits Veratridine-triggered nociceptor activities in L4-L6 rat dorsal root ganglion (DRG) neurons, (ii) blocks voltage-gated sodium (NaV) channels subtype 1.7 in both small-diameter DRG nociceptive neurons and human embryonic kidney (HEK) 293 cell line, (iii) does not affect tetrodotoxin-resistant (TTX-R) NaV channels, and (iv) blunts the upregulation of Nav1.7 in calcitonin gene-related peptide (CGRP)-labeled DRG sensory neurons after spared nerve injury (SNI) surgery. Identifying Nav1.7 as a molecular target of Narirutin may further clarify the analgesic mechanism of natural flavonoid compounds and provide an optimal idea to produce novel selective and efficient analgesic drugs.


Asunto(s)
Productos Biológicos , Neuralgia , Canales de Sodio Activados por Voltaje , Ratas , Humanos , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/metabolismo , Células HEK293 , Ratas Sprague-Dawley , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ganglios Espinales/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Tetrodotoxina/farmacología , Células Receptoras Sensoriales/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
7.
Prog Neurobiol ; 219: 102365, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228888

RESUMEN

Chronic pain is a maladaptive condition affecting 7%- 10% of the population worldwide and can be accompanied by depression, anxiety, and insomnia. In particular, chronic pain is becoming more common due to the increasing incidence of diabetes mellitus, cancer, systemic (body-wide) autoimmune, trauma, and infections that attack nerve tissues with an aging global population. Upon stimuli, pain responses are evoked from nociceptive primary sensory neurons in the peripheral nervous system (PNS). Still, pathological changes leading to central sensitization of the pain circuitry in the central nervous system (CNS) is a key mechanism underlying pain maintenance. In humans, chronic pain can last for years, even after the observable signs and symptoms of the primary inflammation or damage have resolved. It is clear that astrocytes, the most abundant cell type in the CNS, are highly involved in regulating pain signaling under health and disease. Multiple astrocyte subsets and diversified activation states driven by intrinsic and extrinsic cues have recently been identified in the spinal cord and brain, playing complex roles in pain development and resolution. Targeting detrimental astrocyte subtypes and activity is considered a promising pain management strategy. Here, we integrate the latest findings to review differential astrocytes activities in distinct regions of the CNS during pain pathophysiology and discuss the underlying molecular mechanisms that control their mode of action in beneficial or/and harmful aspects of pain. Finally, we provide a translational overview of current progress for pain therapies via modulating astrocytic activity.


Asunto(s)
Astrocitos , Dolor Crónico , Humanos , Astrocitos/metabolismo , Dolor Crónico/metabolismo , Médula Espinal , Encéfalo , Sistema Nervioso Central
8.
Adv Sci (Weinh) ; 9(10): e2105226, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35088579

RESUMEN

The ability of melanoma to acquire metastasis through the induction of angiogenesis is one of the major causes of skin cancer death. Here, it is found that high transcript levels of DEP domain containing 1B (DEPDC1B) in cutaneous melanomas are significantly associated with a poor prognosis. Tissue microarray analysis indicates that DEPDC1B expression is positively correlated with SOX10 in the different stages of melanoma. Consistently, DEPDC1B is both required and sufficient for melanoma growth, metastasis, angiogenesis, and functions as a direct downstream target of SOX10 to partly mediate its oncogenic activity. In contrast to other tumor types, the DEPDC1B-mediated enhancement of melanoma metastatic potential is not dependent on the activities of RHO GTPase signaling and canonical Wnt signaling, but is acquired through secretion of signal peptide, CUB domain and EGF like domain containing 3 (SCUBE3), which is crucial for promoting angiogenesis in vitro and in vivo. Mechanistically, DEPDC1B regulates SCUBE3 protein stability through the competitive association with ubiquitin ligase cell division cycle 16 (CDC16) to prevent SCUBE3 from undergoing degradation via the ubiquitin-proteasome pathway. Importantly, expression of SOX10, DEPDC1B, and SCUBE3 are positively correlated with microvessel density in the advanced stage of melanomas. In conclusion, it is revealed that a SOX10-DEPDC1B-SCUBE3 regulatory axis promotes melanoma angiogenesis and metastasis, which suggests that targeting secreted SCUBE3 can be a therapeutic strategy against metastatic melanoma.


Asunto(s)
Subunidad Apc6 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Unión al Calcio , Proteínas Activadoras de GTPasa , Melanoma , Ubiquitina , Subunidad Apc6 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Melanoma/irrigación sanguínea , Ubiquitina/metabolismo
9.
Aging (Albany NY) ; 13(18): 21903-21913, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551393

RESUMEN

The mortality rate of young female COVID-19 patients is reported to be lower than that of young males but no significant difference in mortality was found between female and male COVID-19 patients aged over 65 years, and the underlying mechanism is unknown. We retrospectively analyzed clinical characteristics and outcomes of severely ill pre- and post-menopausal COVID-19 patients and compared with age-matched males. Of the 459 patients included, 141 aged ≤55, among whom 19 died (16 males vs. 3 females, p<0.005). While for patients >55 years (n=318), 115 died (47 females vs. 68 males, p=0.149). In patients ≤55 years old, the levels of NLR, median LDH, median c-reactive protein and procalcitonin were significantly higher while the median lymphocyte count and LCR were lower in male than in female (all p<0.0001). In patients over 55, these biochemical parameters were far away from related normal/reference values in the vast majority of these patients in both genders which were in contrast to that seen in the young group. It is concluded that the mortality of severely ill pre-menopausal but not post-menopausal COVID-19 female patients is lower than age-matched male. Our findings support the notion that estrogen plays a beneficial role in combating COVID-19.


Asunto(s)
COVID-19/mortalidad , Estrógenos/metabolismo , Menopausia , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Proteína C-Reactiva/metabolismo , COVID-19/metabolismo , Femenino , Identidad de Género , Humanos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Posmenopausia , Premenopausia , Polipéptido alfa Relacionado con Calcitonina/sangre , Estudios Retrospectivos , SARS-CoV-2 , Factores Sexuales
10.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535595

RESUMEN

Pain can be induced by tissue injuries, diseases and infections. The interactions between the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations. In response to stimuli, nociceptors release various mediators from their terminals that potently activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid mediators and growth factors. Immune cells not only play roles in pain production but also contribute to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil, mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge will enhance our understanding of cellular changes and molecular mechanisms underlying pain pathogenies, providing insights for developing new therapeutic strategies.


Asunto(s)
Dolor Crónico/sangre , Dolor Crónico/inmunología , Sistema Inmunológico , Neuroinmunomodulación/fisiología , Sistema Nervioso Periférico/inmunología , Animales , Humanos , Inflamación , Macrófagos/citología , Macrófagos/metabolismo , Mastocitos/citología , Ratones , Monocitos/citología , Neutrófilos/citología , Neutrófilos/metabolismo , Nocicepción , Manejo del Dolor , Sistema Nervioso Periférico/metabolismo , Transducción de Señal , Linfocitos T/citología
11.
Oncogene ; 39(20): 4061-4076, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32214200

RESUMEN

A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether DLC1 is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1-FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients' samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 9 de la Matriz/biosíntesis , Melanoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Proteínas Activadoras de GTPasa/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Melanoma/genética , Melanoma/patología , Proteínas Supresoras de Tumor/genética
12.
Proc Natl Acad Sci U S A ; 117(8): 4199-4210, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32029586

RESUMEN

The transcription factor Sox10 is a key regulator in the fate determination of a subpopulation of multipotent trunk neural crest (NC) progenitors toward glial cells instead of sensory neurons in the dorsal root ganglia (DRG). However, the mechanism by which Sox10 regulates glial cell fate commitment during lineage segregation remains poorly understood. In our study, we showed that the neurogenic determinant Neurogenin 2 (Neurog2) exhibited transient overlapping expression with Sox10 in avian trunk NC progenitors, which progressively underwent lineage segregation during migration toward the forming DRG. Gain- and loss-of-function studies revealed that the temporary expression of Neurog2 was due to Sox10 regulation of its protein stability. Transcriptional profiling identified Sox10-regulated F-box only protein (Fbxo9), which is an SCF (Skp1-Cul-F-box)-type ubiquitin ligase for Neurog2. Consistently, overexpression of Fbxo9 in NC progenitors down-regulated Neurog2 protein expression through ubiquitination and promoted the glial lineage at the expense of neuronal differentiation, whereas Fbxo9 knockdown resulted in the opposite phenomenon. Mechanistically, we found that Fbxo9 interacted with Neurog2 to promote its destabilization through the F-box motif. Finally, epistasis analysis further demonstrated that Fbxo9 and probably other F-box members mediated the role of Sox10 in destabilizing Neurog2 protein and directing the lineage of NC progenitors toward glial cells rather than sensory neurons. Altogether, these findings unravel a Sox10-Fbxo9 regulatory axis in promoting the glial fate of NC progenitors through Neurog2 destabilization.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas F-Box/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOXE/metabolismo , Raíces Nerviosas Espinales/metabolismo , Secuencias de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Embrión de Pollo , Proteínas F-Box/química , Proteínas F-Box/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Cresta Neural/citología , Cresta Neural/metabolismo , Neurogénesis , Unión Proteica , Estabilidad Proteica , Raíces Nerviosas Espinales/citología
13.
J Exp Clin Cancer Res ; 38(1): 17, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642390

RESUMEN

BACKGROUND: In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma. METHODS: Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases. RESULTS: High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling. CONCLUSIONS: These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma.


Asunto(s)
Dosificación de Gen , Melanoma/genética , Melanoma/patología , Factor de Transcripción SOX9/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Biomarcadores , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Humanos , Metaloproteinasas de la Matriz/metabolismo , Melanoma/metabolismo , Ratones , Metástasis de la Neoplasia , Estadificación de Neoplasias , Fosfoproteínas/genética , Unión Proteica , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/genética , Imagen de Lapso de Tiempo , Transactivadores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP rhoA/metabolismo
14.
Stem Cells Int ; 2018: 5280793, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721022

RESUMEN

Previous studies have demonstrated the ability of reprogramming endochondral bone into induced pluripotent stem (iPS) cells, but whether similar phenomenon occurs in intramembranous bone remains to be determined. Here we adopted fluorescence-activated cell sorting-based strategy to isolate homogenous population of intramembranous calvarial osteoblasts from newborn transgenic mice carrying both Osx1-GFP::Cre and Oct4-EGFP transgenes. Following retroviral transduction of Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc), enriched population of osteoblasts underwent silencing of Osx1-GFP::Cre expression at early stage of reprogramming followed by late activation of Oct4-EGFP expression in the resulting iPS cells. These osteoblast-derived iPS cells exhibited gene expression profiles akin to embryonic stem cells and were pluripotent as demonstrated by their ability to form teratomas comprising tissues from all germ layers and also contribute to tail tissue in chimera embryos. These data demonstrate that iPS cells can be generated from intramembranous osteoblasts.

15.
Nat Commun ; 8(1): 1185, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084958

RESUMEN

Following epithelial-mesenchymal transition, acquisition of avian trunk neural crest cell (NCC) polarity is prerequisite for directional delamination and migration, which in turn is essential for peripheral nervous system development. However, how this cell polarization is established and regulated remains unknown. Here we demonstrate that, using the RHOA biosensor in vivo and in vitro, the initiation of NCC polarization is accompanied by highly activated RHOA in the cytoplasm at the cell rear and its fluctuating activity at the front edge. This differential RHOA activity determines polarized NC morphology and motility, and is regulated by the asymmetrically localized RhoGAP Deleted in liver cancer (DLC1) in the cytoplasm at the cell front. Importantly, the association of DLC1 with NEDD9 is crucial for its asymmetric localization and differential RHOA activity. Moreover, NC specifiers, SOX9 and SOX10, regulate NEDD9 and DLC1 expression, respectively. These results present a SOX9/SOX10-NEDD9/DLC1-RHOA regulatory axis to govern NCC migratory polarization.


Asunto(s)
Movimiento Celular , Polaridad Celular , Proteínas Activadoras de GTPasa/metabolismo , Cresta Neural/embriología , Proteína de Unión al GTP rhoA/metabolismo , Animales , Técnicas Biosensibles , Embrión de Pollo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Activadoras de GTPasa/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/metabolismo , Factor de Transcripción SOX9/metabolismo
16.
Dev Biol ; 419(2): 199-216, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27640086

RESUMEN

The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.


Asunto(s)
Enfermedades del Sistema Nervioso/cirugía , Cresta Neural/trasplante , Células-Madre Neurales/trasplante , Trasplante de Células Madre , Células Madre Adultas/trasplante , Animales , Técnicas de Cultivo de Célula , Linaje de la Célula , Células Cultivadas/trasplante , Desarrollo Embrionario , Transición Epitelial-Mesenquimal , Trasplante de Tejido Fetal , Predicción , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Embrionarias Humanas/trasplante , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Cresta Neural/fisiología , Neurogénesis , Especificidad de Órganos , Vertebrados/embriología
17.
Gastroenterology ; 149(7): 1837-1848.e5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26261006

RESUMEN

BACKGROUND & AIMS: Hirschsprung disease is characterized by a deficit in enteric neurons, which are derived from neural crest cells (NCCs). Aberrant hedgehog signaling disrupts NCC differentiation and might cause Hirschsprung disease. We performed genetic analyses to determine whether hedgehog signaling is involved in pathogenesis. METHODS: We performed deep-target sequencing of DNA from 20 patients with Hirschsprung disease (16 men, 4 women), and 20 individuals without (controls), and searched for mutation(s) in GLI1, GLI2, GLI3, SUFU, and SOX10. Biological effects of GLI mutations were tested in luciferase reporter assays using HeLa or neuroblastoma cell lines. Development of the enteric nervous system was studied in Sufu(f/f), Gli3(Δ699), Wnt1-Cre, and Sox10(NGFP) mice using immunohistochemical and whole-mount staining procedures to quantify enteric neurons and glia and analyze axon fasciculation, respectively. NCC migration was studied using time-lapse imaging. RESULTS: We identified 3 mutations in GLI in 5 patients with Hirschsprung disease but no controls; all lead to increased transcription of SOX10 in cell lines. SUFU, GLI, and SOX10 form a regulatory loop that controls the neuronal vs glial lineages and migration of NCCs. Sufu mutants mice had high Gli activity, due to loss of Sufu, disrupting the regulatory loop and migration of enteric NCCs, leading to defective axonal fasciculation, delayed gut colonization, or intestinal hypoganglionosis. The ratio of enteric neurons to glia correlated inversely with Gli activity. CONCLUSIONS: We identified mutations that increase GLI activity in patients with Hirschsprung disease. Disruption of the SUFU-GLI-SOX10 regulatory loop disrupts migration of NCCs and development of the enteric nervous system in mice.


Asunto(s)
Sistema Nervioso Entérico/anomalías , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Estudios de Casos y Controles , Linaje de la Célula , Movimiento Celular , Análisis Mutacional de ADN/métodos , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad de Hirschsprung/diagnóstico , Enfermedad de Hirschsprung/metabolismo , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Cresta Neural/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/metabolismo , Transfección , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
18.
Biochim Biophys Acta ; 1852(8): 1676-86, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25981745

RESUMEN

A germline mutation (A339V) in thyroid transcription factor-1 (TITF1/NKX2.1) was shown to be associated with multinodular goiter (MNG) and papillary thyroid carcinoma (PTC) pathogenesis. The overexpression of A339V TTF1 significantly promoted hormone-independent growth of the normal thyroid cells, representing a cause of MNG and/or PTC. Nevertheless, the underlying mechanism still remains unclear. In this study, we used liquid chromatography (LC)-tandem mass spectrometry (MS/MS)-based shotgun proteomics comparing the global protein expression profiles of normal thyroid cells (PCCL3) that overexpressed the wild-type or A339V TTF1 to identify key proteins implicated in this process. Proteomic pathway analysis revealed that the aberrant activation of epidermal growth factor (EGF) signaling is significantly associated with the overexpression of A339V TTF1 in PCCL3, and clathrin heavy chain (Chc) is the most significantly up-regulated protein of the pathway. Intriguingly, dysregulated Chc expression facilitated a nuclear accumulation of pStat3, leading to an enhanced cell proliferation of the A339V clones. Down-regulation and abrogation of Chc-mediated cellular trafficking, respectively, by knocking-down Chc and ectopic expression of a dominant-negative (DN) form of Chc could significantly reduce the nuclear pStat3 and rescue the aberrant cell proliferation of the A339V clones. Subsequent expression analysis further revealed that CHC and pSTAT3 are co-overexpressed in 66.7% (10/15) MNG. Taken together, our results suggest that the A339V TTF1 mutant protein up-regulates the cellular expression of Chc, resulting in a constitutive activation of Stat3 pathway, and prompting the aberrant growth of thyroid cells. This extensive growth signal may promote the development of MNG.


Asunto(s)
Proliferación Celular , Cadenas Pesadas de Clatrina/genética , Cadenas Pesadas de Clatrina/metabolismo , Bocio Nodular/patología , Glándula Tiroides/citología , Glándula Tiroides/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células COS , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Carcinoma Papilar , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Niño , Chlorocebus aethiops , Femenino , Regulación Neoplásica de la Expresión Génica , Bocio Nodular/genética , Bocio Nodular/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Adulto Joven
19.
Neurosignals ; 22(1): 1-13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24356576

RESUMEN

The enteric nervous system (ENS) in mammals is derived from a small pool of progenitor cells, namely enteric neural crest cells (NCCs). These precursor cells proliferate extensively to expand, migrate over a long distance to fully colonize the developing gut and differentiate into millions of neurons and glia to form a functional ENS for regulating the complex behaviors of the gut. This developmental process relies on a precise regulation of the neuronal and glial differentiation and requires an appropriate balance between the migration, proliferation and differentiation of enteric NCCs and their progeny. Hedgehog (Hh) and Notch signalings are essential for almost every aspect of ENS development, and they confer both the long- and short-range signals to coordinate these seemingly diverse cellular processes. In this review, we summarize the roles of Hh and Notch signaling, particularly in the context of gut organogenesis and ENS development and emphasize how combinatory Hh and Notch signaling renders functional diversity as well as specificity.


Asunto(s)
Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/metabolismo , Proteínas Hedgehog/metabolismo , Cresta Neural/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...