Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Adv ; 10(7): eadk3114, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354244

RESUMEN

Resonant inelastic x-ray scattering (RIXS) is a major method for investigation of electronic structure and dynamics, with applications ranging from basic atomic physics to materials science. In RIXS applied to inversion-symmetric systems, it has generally been accepted that strict parity selectivity applies in the sub-kilo-electron volt region. In contrast, we show that the parity selection rule is violated in the RIXS spectra of the free homonuclear diatomic O2 molecule. By analyzing the spectral dependence on scattering angle, we demonstrate that the violation is due to the phase difference in coherent scattering at the two atomic sites, in analogy with Young's double-slit experiment. The result also implies that the interpretation of x-ray absorption spectra for inversion symmetric molecules in this energy range must be revised.

2.
Nanoscale ; 15(28): 11860-11866, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376924

RESUMEN

Orbital angular momentum (OAM) of light has the potential to induce high-order transitions of electrons in atoms by compensating for the OAM required. However, due to the dark spot situating at the focal center of the OAM beam, high-order transitions are typically weak. In this study, we demonstrate efficient and selective high-order resonances in symmetric and asymmetric plasmonic nanoparticles that are comparable in size to the waist radius of the OAM beam. In a symmetric nanoparticle configured with a complete nanoring lying on the focal center, there is a pure high-order resonance obeying the law of conservation of angular momentum during the interaction between OAM light and the nanosystem. In an asymmetric nanoparticle configured with an complete ring off the beam center or a splitting nanoring, there are multiple resonances whose resonance orders are influenced by the ring's geometry, position, orientation, and photon OAM. Thus, high-order resonances in the symmetric and asymmetric plasmonic nanostructures are selectively stimulated using vortex beams. Our results may help to understand and control OAM-involved light-material interactions of asymmetric nanosystems.

3.
J Chem Phys ; 158(11): 114304, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36948799

RESUMEN

We study the rotational dynamics induced by the recoil effect in diatomic molecules using time-resolved two-color x-ray pump-probe spectroscopy. A short pump x-ray pulse ionizes a valence electron inducing the molecular rotational wave packet, whereas the second time-delayed x-ray pulse probes the dynamics. An accurate theoretical description is used for analytical discussions and numerical simulations. Our main attention is paid to the following two interference effects that influence the recoil-induced dynamics: (i) Cohen-Fano (CF) two-center interference between partial ionization channels in diatomics and (ii) interference between the recoil-excited rotational levels manifesting as the rotational revival structures in the time-dependent absorption of the probe pulse. The time-dependent x-ray absorption is computed for the heteronuclear CO and homonuclear N2 molecules as showcases. It is found that the effect of CF interference is comparable with the contribution from independent partial ionization channels, especially for the low photoelectron kinetic energy case. The amplitude of the recoil-induced revival structures for the individual ionization decreases monotonously with a decrease in the photoelectron energy, whereas the amplitude of the CF contribution remains sufficient even at the photoelectron kinetic energy below 1 eV. The profile and intensity of the CF interference depend on the phase difference between the individual ionization channels related to the parity of the molecular orbital emitting the photoelectron. This phenomenon provides a sensitive tool for the symmetry analysis of molecular orbitals.

4.
Phys Chem Chem Phys ; 24(11): 6627-6638, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35234760

RESUMEN

Modern stationary X-ray spectroscopy is unable to resolve rotational structure. In the present paper, we propose to use time-resolved two color X-ray pump-probe spectroscopy with picosecond resolution for real-time monitoring of the rotational dynamics induced by the recoil effect. The proposed technique consists of two steps. The first short pump X-ray pulse ionizes the valence electron, which transfers angular momentum to the molecule. The second time-delayed short probe X-ray pulse resonantly excites a 1s electron to the created valence hole. Due to the recoil-induced angular momentum the molecule rotates and changes the orientation of transition dipole moment of core-excitation with respect to the transition dipole moment of the valence ionization, which results in a temporal modulation of the probe X-ray absorption as a function of the delay time between the pulses. We developed an accurate theory of the X-ray pump-probe spectroscopy of the recoil-induced rotation and study how the energy of the photoelectron and thermal dephasing affect the structure of the time-dependent X-ray absorption using the CO molecule as a case-study. We also discuss the feasibility of experimental observation of our theoretical findings, opening new perspectives in studies of molecular rotational dynamics.

5.
Sci Rep ; 11(1): 4098, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602972

RESUMEN

Quenching of vibrational excitations in resonant inelastic X-ray scattering (RIXS) spectra of liquid acetic acid is observed. At the oxygen core resonance associated with localized excitations at the O-H bond, the spectra lack the typical progression of vibrational excitations observed in RIXS spectra of comparable systems. We interpret this phenomenon as due to strong rehybridization of the unoccupied molecular orbitals as a result of hydrogen bonding, which however cannot be observed in x-ray absorption but only by means of RIXS. This allows us to address the molecular structure of the liquid, and to determine a lower limit for the average molecular chain length.

6.
Proc Natl Acad Sci U S A ; 116(11): 4877-4882, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30733297

RESUMEN

Observing and controlling molecular motion and in particular rotation are fundamental topics in physics and chemistry. To initiate ultrafast rotation, one needs a way to transfer a large angular momentum to the molecule. As a showcase, this was performed by hard X-ray C1s ionization of carbon monoxide accompanied by spinning up the molecule via the recoil "kick" of the emitted fast photoelectron. To visualize this molecular motion, we use the dynamical rotational Doppler effect and an X-ray "pump-probe" device offered by nature itself: the recoil-induced ultrafast rotation is probed by subsequent Auger electron emission. The time information in our experiment originates from the natural delay between the C1s photoionization initiating the rotation and the ejection of the Auger electron. From a more general point of view, time-resolved measurements can be performed in two ways: either to vary the "delay" time as in conventional time-resolved pump-probe spectroscopy and use the dynamics given by the system, or to keep constant delay time and manipulate the dynamics. Since in our experiment we cannot change the delay time given by the core-hole lifetime τ, we use the second option and control the rotational speed by changing the kinetic energy of the photoelectron. The recoil-induced rotational dynamics controlled in such a way is observed as a photon energy-dependent asymmetry of the Auger line shape, in full agreement with theory. This asymmetry is explained by a significant change of the molecular orientation during the core-hole lifetime, which is comparable with the rotational period.

7.
J Chem Phys ; 136(21): 214310, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22697546

RESUMEN

We devise a theoretical description for the response of nitrogen molecules (N(2)) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations (ΔSCF method). To describe the interaction with N(2), a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N(2): a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N(2)(2+), and molecular fragmentation are explained.

8.
Phys Rev Lett ; 106(17): 177401, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21635061

RESUMEN

The electroluminescence (EL) of molecules confined inside a nanocavity in the scanning tunneling microscope possesses many intriguing but unexplained features. We present here a general theoretical approach based on the density-matrix formalism to describe the EL from molecules near a metal surface induced by both electron tunneling and localized surface plasmon excitations simultaneously. It reveals the underlying physical mechanism for the external bias dependent EL. The important role played by the localized surface plasmon on the EL is highlighted. Calculations for porphyrin derivatives have reproduced corresponding experimental spectra and nicely explained the observed unusual large variation of emission spectral profiles. This general theoretical approach can find many applications in the design of molecular electronic and photonic devices.

9.
J Phys Chem B ; 115(18): 5103-12, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21370829

RESUMEN

Resonant Auger spectra of ethene molecule have been measured with vibrational resolution at several excitation energies in the region of the C1s(-1)1b(2g)(π*) resonance. The main features observed in the experiment have been assigned and are accurately interpreted on the basis of ab initio multimode calculations. Theory explains the extended vibrational distribution of the resonant Auger spectra and its evolution as a function of the excitation energy by multimode excitation during the scattering process. As a result, the resonant Auger spectra display two qualitatively different spectral features following the Raman and non-Raman dispersion laws, respectively. Calculations show that two observed thresholds of formation of non-Raman spectral bands are related to the "double-edge" structure of the X-ray absorption spectrum.


Asunto(s)
Etilenos/química , Termodinámica , Espectroscopía de Absorción de Rayos X
10.
Phys Rev Lett ; 105(23): 233001, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21231455

RESUMEN

Dissociative nuclear motion in core-excited molecular states leads to a splitting of the fragment Auger lines: the Auger-Doppler effect. We present here for the first time experimental evidence for an Auger-Doppler effect following F1s → a(1g)* inner-shell excitation by circularly polarized x rays in SF(6). In spite of a uniform distribution of the dissociating S-F bonds near the polarization plane of the light, the intersection between the subpopulation of molecules selected by the core excitation with the cone of dissociation induces a strong anisotropy in the distribution of the S-F bonds that contributes to the scattering profile measured in the polarization plane.

11.
J Chem Phys ; 130(5): 054114, 2009 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-19206965

RESUMEN

We present a dynamical theory of nonlinear absorption and propagation of laser pulses with duration in the microsecond time domain. The general theory is applied to fullerene C(60) because of its good optical limiting properties, namely, a rather low ground state absorption and a strong triplet-triplet absorption. It is shown that sequential absorption involving strong triplet-triplet transitions is the major mechanism of nonlinear absorption. The intrinsic hierarchy of time scales makes an adiabatic solution of the coupled rate equations valid, which therefore can be reduced to a single dynamical equation for the ground state population. The slow evolution of this population is defined by an effective rate of population transfer to the triplet state and by the pulse duration. The propagation effect plays an important role in the optical power limiting performance. The intensity of the field as well as the population of the triplet state decreases during the pulse propagation, and a weakened nonlinear sequential two-photon absorption is followed by a linear one-photon absorption which gradually becomes the dominating process. The competition between these qualitatively different processes depends on the field intensity, the length of the absorber, and the concentration. The pulse propagation is studied by solving numerically the two-dimensional paraxial field equation together with the effective rate equation for the ground state population.

12.
J Chem Phys ; 124(2): 024704, 2006 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-16422623

RESUMEN

In this paper, the equilibrium geometries, one-, two-, and three-photon absorption properties, and the transition nature of a series of Y-shaped molecules which possess an imidazole-thiazole core have been theoretically studied by using the parametrization model 3 and Zerner's intermediate neglect of differential overlap methods. Our calculated results have confirmed the experimental findings that the investigated molecules are all promising multiphoton absorption materials and both the two-photon absorption and the three-photon absorption cross sections are seriatim increscent along with the increase of the electron-donor strength. The nonlinear optical phenomenon originates from the intramolecular charge transfer within the pi-conjugated system. The calculated results indicate that the heterocyclic core increases the two- and three-photon absorption cross sections due to its pi-excessive nature. So it can provide more free electrons to enlarge the charge transfer within the molecule system. In addition, the design of Y shape and the sulfonyl-based electron-accepting group play a part in the enhancement of multiphoton absorption. It is notable that molecules with heterocyclic core will provide favorable condition for multiphoton absorption applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...