Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4281, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769121

RESUMEN

Highly selective capture of radiocesium is an urgent need for environmental radioactive contamination remediation and spent fuel disposal. Herein, a strategy is proposed for construction of "inorganic ion-imprinted adsorbents" with ion recognition-separation capabilities, and a metal sulfide Cs2.33Ga2.33Sn1.67S8·H2O (FJSM-CGTS) with "imprinting effect" on Cs+ is prepared. We show that the K+ activation product of FJSM-CGTS, Cs0.51K1.82Ga2.33Sn1.67S8·H2O (FJMS-KCGTS), can reach adsorption equilibrium for Cs+ within 5 min, with a maximum adsorption capacity of 246.65 mg·g-1. FJMS-KCGTS overcomes the hindrance of Cs+ adsorption by competing ions and realizes highly selective capture of Cs+ in complex environments. It shows successful cleanup for actual 137Cs-liquid-wastes generated during industrial production with removal rates of over 99%. Ion-exchange column filled with FJMS-KCGTS can efficiently treat 540 mL Cs+-containing solutions (31.995 mg·L-1) and generates only 0.12 mL of solid waste, which enables waste solution volume reduction. Single-crystal structural analysis and density functional theory calculations are used to visualize the "ion-imprinting" process and confirm that the "imprinting effect" originates from the spatially confined effect of the framework. This work clearly reveals radiocesium capture mechanism and structure-function relationships that could inspire the development of efficient inorganic adsorbents for selective recognition and separation of key radionuclides.

2.
Dalton Trans ; 53(13): 6063-6069, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38477327

RESUMEN

A new layered metal sulfide, namely (C6H15N3)1.3(NH4)1.5H1.5In3SnS8 (1, C6H15N3 = N-(2-aminoethyl) piperazine), has been solvothermally synthesized and characterized. Compound 1 crystallizes in the monoclinic space group C2/c. Its structure features a two-dimensional layer of {In3SnS8}n3n- with the (4,4) topology net, which is formed by interlinking supertetrahedral T2 clusters as secondary building units. Band structure calculations revealed that 1 had a band gap of 2.7 eV. The photoelectric response of 1 showed steady and reversible on/off cycles with an "on" state of 121.13 nA cm-2. Moreover, the activation of 1 by replacing the sluggish organic cations with harder K+ ions endowed the material with improved adsorption performances for Sr2+ ions from aqueous solutions.

3.
Dalton Trans ; 53(3): 1156-1162, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38105701

RESUMEN

Two isostructural Co(Cd)-antimony-oxo tartrate cluster-based compounds with a one-dimensional (1-D) belt-like structure, namely H9.2[Co(H2O)6]{M0.5(H2O)3.5{M'(H2O)4[SbVO6[Co4.2(H2O)5SbIII6(µ3-O)2(tta)6]]}}2·nH2O (M = Co, M' = Co, n = 9 (1); M = Cd0.39/Co0.61, M' = Cd0.24/Co0.76, n = 7 (2); H4tta = tartaric acid), have been synthesized by solvothermal methods. It is noteworthy that the relatively rare mixed-valence Sb(III,V) exists in the structures. The anionic clusters in both compounds appear to be in a sandwich configuration; the top and bottom layers are based on {Sb3(µ3-O)(tta)3} brackets, and the intermediate layer is occupied by {SbVO6[Co4.2(H2O)5]}. The title compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, thermogravimetric analyses, and UV-Vis spectroscopy. We chose compound 2 as a representative to test its proton conductivity, and the results show that the conductivity can reach 1.42 × 10-3 S cm-1 at 85 °C under 98% relative humidity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...