Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888371

RESUMEN

Non-small cell lung cancer (NSCLC) is the primary inducer of cancer-related death worldwide. Asiaticoside (ATS) is a triterpenoid saponin that has been indicated to possess an antitumor activity in several malignancies. Nonetheless, its detailed functions in NSCLC remain unclarified. In this study, NSCLC cells were exposed to various doses of ATS. Functional experiments were employed to estimate the ATS effect on NSCLC cell behaviors. Western blotting was implemented for protein expression evaluation. A xenograft mouse model was established to assess the ATS effect on NSCLC in vivo. The results showed that ATS restrained NSCLC cell proliferation, cell cycle progression, migration, and invasiveness. ATS reversed TGF-ß-induced promotion in epithelial-mesenchymal transition (EMT). Mechanistically, ATS inhibited Wnt/ß-catenin signaling in NSCLC. Upregulating ß-catenin restored ATS-mediated suppression of NSCLC cell aggressiveness. Moreover, ATS administration repressed tumorigenesis in tumor-bearing mice. In conclusion, ATS represses growth and metastasis in NSCLC by blocking EMT via the inhibition of Wnt/ß-catenin signaling.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38593330

RESUMEN

With the continuous development of electromagnetic wave-absorbing materials, the design of artificial structures for electromagnetic absorbers based on the concept of metamaterials is becoming more abundant. However, in the design process, it is difficult to further broaden the effective absorption band due to the limitation that the traditional single-size structure responds to electromagnetic waves only in specific frequency bands. Therefore, in this paper, based on the moth-eye bionic hexagonal structure absorber with antireflection performance, an Archimedean tiling structure is designed to optimize it, and through the introduction of a variety of primitives with large differences in dimensions, a multifrequency band-response mechanism is achieved to enhance the multireflection mechanism, which can effectively broaden the absorption band and improve the wave absorption performance. Ultimately, the moth-eye bionic structure absorber optimized by (3.4.6.4) can achieve an effective absorption of 10.26 GHz at a thickness of 2 mm. This work presents a new idea for the design work of electromagnetic wave-absorbing metamaterials, which has a broad application prospect in the aerospace, electronic information countermeasures, communication, and detection industries.

3.
Inorg Chem ; 63(19): 8938-8947, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38682566

RESUMEN

A high-performance transition-metal oxide catalyst can be designed by appropriately integrating the concepts of morphology regulation and electronic structure modulation. In this work, hierarchical Co3O4 wreaths (CCW) enriched with oxygen vacancies (Ov) were facilely constructed for the selective oxidation of ethylbenzene (EB) to acetophenone (AP). Under the screened optimal reaction conditions, the CCW catalyst can offer a 79.1% conversion of EB (ri = 0.244 mol gcat-1 h-1) accompanied by a selectivity of 92.3% to AP. The good reaction performance can be attributed to the cooperation of defect engineering and architecture design, which can synergistically facilitate the EB oxidation performance by augmenting the intrinsic reactivity and accessibility of active sites. This work presents a reliable route to construct a high-performance transitional metal oxide catalyst via manipulation of electronic effect and assembly architecture for the selective oxidation of EB and beyond.

4.
Inorg Chem ; 63(11): 5142-5150, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38433379

RESUMEN

The catalytic oxidation of ethylbenzene (EB) is a promising route to produce acetophenone (AcPO). Unfortunately, it remains a great challenge to achieve the highly efficient oxidation of EB under solvent-free conditions using molecular oxygen as the sole oxidant. In this contribution, we present a facile strategy to construct hierarchical oxygen vacancy-rich Co3O4/CoMoO4 heterostructures (Vö-CCMO), which delivers a high yield value of 74.5% at 83.2% conversion of EB and selectivity of 89.6% to AcPO. Both experimental studies and theoretical calculations substantiate the important role of oxygen-defect engineering triggered by the modified chemistry environment at the interfaces between the biphasic phases, which contributes to the good catalytic performance. This work illustrates a promising paradigm for the exploit of advanced catalysts toward boosting EB oxidation reaction in a more practical way.

5.
Inorg Chem ; 63(9): 4214-4223, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436239

RESUMEN

The reductive transformation of Cr(VI) into Cr(III) mediated by formic acid with efficient, stable, and cost-effective catalysts is a promising strategy for remediating Cr(VI) contamination. Herein, we report the facile construction of uniform Co@NC nanosheet-assembled microflowers for the reduction of Cr(VI). Both experimental results and density functional theory (DFT) calculations reveal the vital role of the intensive interfacial electronic interaction between Co nanoparticles and the N-doped carbon layer in facilitating the anchoring and dispersion of Co nanoparticles within the carbon framework. The interfacial electron transfer from Co to NC contributes to the interaction with Cr2O72- ions, promoting the subsequent H-transfer reaction. A Langmuir-Hinshelwood kinetic model has been established for the Cr(VI) reduction catalyzed by the CNCF2 (pyrolyzed at 700 °C), which shows a superior reaction performance. This study provides a facile strategy to delicately design well-assembled heterostructures with rich interfaces and strong interfacial interactions for a series of applications in environmental/thermal catalysis.

6.
ACS Appl Mater Interfaces ; 16(6): 8119-8129, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38293896

RESUMEN

Metamaterial has received widespread research in the fields of electromagnetic stealth due to its characteristics of strong resonance and flexible designability. However, a lack of a comprehensive understanding of the internal physical mechanism still imposes certain limitations on broadband absorption designs. Hence, this work proposes a new strategy for the broadening of the working frequency band of metamaterial absorbers by constructing local-chiral features to regulate the amplitude and phase information. The absorber consists of staggered cut-wire metal patterns with lumped resistors placed at the center position determined by characteristic mode analysis. Combining the modal significance, equivalent circuit, surface current, electric field distribution, and symmetry model theory, the working mechanism for wideband absorption performance has been analyzed in detail. The experimental results are in good agreement with the simulation results; the absorption rate exceeds 82% in the frequency range of 4.5-11.7 GHz and surpasses about 90% in the frequency range of 4.7-10.8 GHz under transverse electric (TE) or transverse-magnetic (TM) polarizations. Compared to the case without chiral features, the proposed design can achieve a 28% increase in operating bandwidth. The proposed design method is applicable for the optimization of various typical dipole-type metamaterial absorbers and provides a novel strategy for future wideband metamaterial absorption.

7.
Inorg Chem ; 63(1): 824-832, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38114300

RESUMEN

The catalytic oxidation of ethylbenzene (EB) into acetophenone (AP) is a vibrant area, with a growing number of researchers paying attention to this thematic investigation. Herein, we demonstrate that spinel-type (Co,Mn)(Co,Mn)2O4 can function as an efficient catalyst for the solvent-free oxidation of EB with molecular oxygen. The incorporation of Mn into the Co3O4 network can break the local structural symmetry of Co-O-Co linkages due to the bond competition, inducing the formation of an asymmetrical Co-O-Mn configuration with an electron local exchange interaction. The Co-O-Mn sites can facilitate the perturbation of nonpolar O2 and thus contribute to the generation of abundant •O2- species for initiating the oxidation of EB. We envision that this study not only provides a promising catalyst for EB oxidation but also affords a new insight into the design of advanced spinel oxides for selective oxidation reactions.

8.
Inorg Chem ; 62(45): 18750-18757, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37919248

RESUMEN

Utilization of naturally occurring limonene from renewable biomass as a key starting material for the synthesis of valuable chemicals is a promising avenue to reduce both the dependence on nonrenewable fossil fuels and global CO2 emission. Herein, we report a highly active tremella-like ZnCo2O4 catalyst for the selective oxidation of limonene with molecular oxygen under mild reaction conditions. The developed ZnCo2O4 catalyst exhibits an appealing reaction performance with a limonene conversion of 93.5% (reaction rate of 0.0823 mmol gcat-1 h-1) and selectivity of 75.8% for 1,2-limonene oxide (LO), far outperforming the monometallic oxides of ZnO and Co3O4. Detained experimental characterizations and analyses manifest that the substitution of Zn into the Co3O4 framework can facilitate the formation of more unsaturated coordination sites and oxygen vacancies due to the modified chemical environment of Co atoms, inducing a beneficial synergistic intermetallic effect for the limonene oxidation catalysis.

9.
BMC Med Imaging ; 23(1): 119, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697237

RESUMEN

BACKGROUND: To investigate the diagnostic performance of parameters derived from monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging models in differentiating tumour progression from pseudoprogression in glioblastoma patients. METHODS: Forty patients with pathologically confirmed glioblastoma exhibiting enhancing lesions after completion of chemoradiation therapy were enrolled in the study, which were then classified as tumour progression and pseudoprogression. All patients underwent conventional and multi-b diffusion-weighted MRI. The apparent diffusion coefficient (ADC) from a monoexponential model, the true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched-exponential model were compared between tumour progression and pseudoprogression groups. Receiver operating characteristic curves (ROC) analysis was used to investigate the diagnostic performance of different DWI parameters. Interclass correlation coefficient (ICC) was used to evaluate the consistency of measurements. RESULTS: The values of ADC, D, DDC, and α values were lower in tumour progression patients than that in pseudoprogression patients (p < 0.05). The values of D* and f were higher in tumour progression patients than that in pseudoprogression patients (p < 0.05). Diagnostic accuracy for differentiating tumour progression from pseudoprogression was highest for α(AUC = 0.94) than that for ADC (AUC = 0.91), D (AUC = 0.92), D* (AUC = 0.81), f (AUC = 0.75), and DDC (AUC = 0.88). CONCLUSIONS: Multi-b DWI is a promising method for differentiating tumour progression from pseudoprogression with high diagnostic accuracy. In addition, the α derived from stretched-exponential model is the most promising DWI parameter for the prediction of tumour progression in glioblastoma patients.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Imagen de Difusión por Resonancia Magnética , Quimioradioterapia , Curva ROC
10.
J Colloid Interface Sci ; 650(Pt A): 701-709, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441963

RESUMEN

Glycerol oxidation reaction can be substituted for oxygen evolution reaction for more efficient hydrogen production due to its lower thermodynamic potential. Herein, a series of NiCo hydroxide nanosheets containing abundant Ni3+ species and surface ligands were synthesized by in-situ structural transformation of bimetallic organic frameworks in alkaline media for efficient glycerol oxidation reaction. It is found that the incorporation of Co ions increases the content of the Ni3+ species, and that the Ni/Co ratio of 1.0 lead to the optimal catalytic performance. The oxalate-modified nickel-cobalt hydroxide with the optimized Ni/Co ratio can deliver a current density of 10 mA cm-2 at 1.26 V vs. RHE (reversible hydrogen electrode), and reaches its maximum selectivity and Faradaic efficiency at 1.30 V vs. RHE. A high selectivity of 82.9% and a Faradaic efficiency of 91.0% are achieved. The high catalytic activity can be mainly attributed to the abundant Ni3+ species and surface carboxyl groups.

11.
J Colloid Interface Sci ; 632(Pt A): 44-53, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403376

RESUMEN

Nickel-iron oxides are competitive electrocatalysts for oxygen evolution reaction, but their practical applications are restricted by the less-than-desirable intrinsic activity and working stability. To tackle the challenge, surface coordination chemistry is applied to the nickel-iron oxides through a complex-assisted in-situ crystal growth strategy. The ethylenediaminetetraacetate (EDTA) coordinated NixFe3-xO4 (NixFe3-xO4-EDTA) is prepared by a simple one-pot hydrothermal process. The coordinated EDTA molecules can deeply alter the surface coordination structure of the NixFe3-xO4. The NixFe3-xO4-EDTA demonstrates outstanding intrinsic activity towards oxygen evolution reaction, requiring only a small overpotential of 180 mV to reach 10 mA cm-2 in 1.0 M KOH. Moreover, the NixFe3-xO4-EDTA exhibits extremely stable long-term working stability. Density functional theory calculations show that the highly enhanced intrinsic activity is attributed to the surface coordinated EDTA-induced favorable electronic structure and coordination environment, which tunes the adsorption strength of the intermediates and optimizes the energetics of the elementary steps, while the high stability is ascribed to the strong coordination ability of EDTA.

12.
J Colloid Interface Sci ; 630(Pt A): 804-812, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36279839

RESUMEN

Efficient cyclooctene epoxidation process under mild reaction conditions highly relies on the rational design and synthesis of high-performance heterogeneous catalysts. Herein, we report the facile one-pot synthesis of V2O5/FeVO4 heterostructures featured with heterointerfaces for the boosted epoxidation of cyclooctene. The intensive interfacial electronic interaction between the V2O5 and FeVO4 phases is versatile in the modulation of coordination microenvironment and formation of abundant oxygen vacancies, contributing to the performance enhancement. Under the optimal reaction conditions, a high yield of 87.0% can be achieved with the cyclooctene conversion of 96.5% (initial reaction rate of 55.1 mmol gcat-1 h-1) and cyclooctene oxide selectivity of 90.2%. Additionally, the V2O5/FeVO4 catalyst is stable and recyclable, endowing it a promising prospect for practical applications. This study demonstrates that the application of interface engineering strategy can be an appealing avenue towards the development of high-performance catalysts for epoxidation of cyclooctene and beyond.


Asunto(s)
Ciclooctanos , Catálisis , Ciclooctanos/química
13.
J Colloid Interface Sci ; 629(Pt B): 501-510, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36174293

RESUMEN

Applications of urea oxidation reaction (UOR) in various sustainable energy-conversion systems are greatly hindered by its slow kinetics. Herein, we demonstrate an in-situ confined synthesis method that produces amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets (Ni/NiO@CrOx) with fast reaction kinetics towards UOR. The confinement effect of the in-situ generated CrOx overlay contributes to ultrafine Ni/NiO nanoparticles, bringing about rich Ni/NiO and NiO/CrOx interfaces. In-situ Raman and electrochemical characterization show that both CrOx and metallic Ni can promote the formation of the NiOOH species and the electron transfer, leading to high intrinsic activity and fast reaction kinetics. At 1.40 V vs. reversible hydrogen electrode, the Ni/NiO@CrOx delivers a current density of 275 mA cm-2, which is about 2.6 and 6.1 times as large as those of the NiO@CrOx and NiO, respectively. In addition, the protective effect of the CrOx overlay leads to robust working stability towards UOR. Further, the Ni/NiO@CrOx nanosheets are used as bifunctional catalysts for overall urea splitting, and a small electrolysis cell voltage of 1.44 V is needed to reach the benchmark current density of 10 mA cm-2.

14.
J Colloid Interface Sci ; 629(Pt B): 370-378, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36162394

RESUMEN

NiOOH has been considered as the active center for urea oxidation reaction (UOR), but it remains challenging to synthesize high-performance NiOOH-based catalysts. Herein, we realize the synthesis of a high-performance NiOOH-based catalyst through in-situ transformation from the NiMn-based metal-organic framework to NiMnOOH. X-ray photoelectron spectroscopy characterization shows that the Ni3+/Ni2+ ratio in the NiMnOOH is 3.9 times as big as that in the Ni(OH)2, and in-situ Raman characterization further consolidates the presence of the NiOOH species in the NiMnOOH and as well unveils the faciliated Ni2+/Ni3+ redox reaction. The abundant NiOOH species, the markedly facilitated Ni2+/Ni3+ redox reaction and the Ni-Mn synergy contribute to the high intrinsic activity of the NiMnOOH towards UOR. The NiMnOOH exhibits an impressively low onset potential of 1.305 V vs reversible hydrogen electrode (RHE) and requires only a small potential of 1.34 V vs RHE to deliver a current density of 100 mA cm-2 in 1.0 M KOH + 0.33 M urea. In addition, the NiMnOOH catalyst possesses good long-term working stability.

15.
J Colloid Interface Sci ; 622: 986-994, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35561616

RESUMEN

NiFe alloys are among the most promising electrocatalysts for oxygen evolution reaction (OER). However, a comprehensive study is yet to be done to reveal the surface structure-performance relationship of NiFe alloys. In particular, the role of the ultrathin surface oxide layer, which is unavoidable for pure NiFe alloys, is always neglected. Herein, a series of NiFe alloys with different Ni/Fe ratios are fabricated. It is found that different Ni/Fe ratios lead to significant differences in surface composition and structure of the NiFe alloys, and thus affect their catalytic performance. Then, the oxide/metal interface of the Ni4Fe1 alloy is tailored by adjusting the hydrogenation temperature to further understand the surface structure-activity relationship, and the optimal OER performance is achieved at the oxide/metal interfaces that have suitable surface Fe/Ni ratio and an appropriate amount of oxygen vacancies. In-situ Raman characterization shows that the Ni4Fe1 alloy with well-tailored oxide/metal interface facilitates the formation of active species. Density functional theory calculations demonstrate that the ultrathin surface oxide layers are responsible for the high catalytic activity of the NiFe alloys, and that the quantity of oxygen vacancies in the surface oxides affects the adsorption energy of O* and thus to a great extent determines the catalytic activity.

16.
J Colloid Interface Sci ; 614: 102-109, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35091139

RESUMEN

Herein, we developed a series of CeVO4 samples with hierarchical hollow microsphere-like structure obtained at different calcination temperatures for the selective oxidation of ethylbenzene (EB) to acetophenone (AcPO) in the presence of TBHP. The optimized catalyst (CVO-500) exhibits a very high yield value of 95.0% (initial reaction rate of 49.4 mmol gcat-1 h-1) under the optimal reaction conditions. Importantly, the representative CVO-500 catalyst presents high stability, with the reaction performance well maintained after five consecutive uses. It has been indicated that the redox V5+/V3+ sites serve as the main active centers, while the electronic interaction and redox transformation between Ce and V facilitates the hopping of V5+/V3+ and the generation of oxygen vacancies. The bimetallic synergy between V and Ce thus endows the CVO-500 catalyst an excellent performance in the EB oxidation reaction. This work paves the way for the exploit of high-performance and cost-effective catalyst for the EB oxidation and beyond.

17.
J Colloid Interface Sci ; 606(Pt 2): 1758-1766, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500173

RESUMEN

Metal-free catalysts with environmental friendless, cost-competitiveness and less susceptibility to leaching and poisoning over metal-based catalysts, have revolutionized in the catalysis domain. In this respect, we herein report the first application of cheap and abundant pumpkin-derived N-doped porous carbon for the reduction of 2-methyl-4-nitrophenol assisted by NaBH4. The obtained catalyst is cost-competitive, efficient and robust, with an attractive mass-normalized rate constant of 4.73 s-1 g-1 and good recycling performance. Systematical analyses demonstrate that the 2-methyl-4-nitrophenol reduction reaction catalyzed by the N-doped carbon proceeds through the Langmuir-Hinshelwood kinetics and the performance enhancement benefits from the strong adsorption and activation of the substrates induced by the electronic modulation in the carbon framework via N-doping. This study opens up new avenues for the high-value use of pumpkin as well as the development of metal-free strategy in more catalytic applications.


Asunto(s)
Carbono , Cucurbita , Nitrógeno , Nitrofenoles , Porosidad
18.
J Colloid Interface Sci ; 607(Pt 2): 1353-1361, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34583040

RESUMEN

Edge sites and interlayer space of NiFe layered double hydroxides (LDHs) play an important role in water oxidation. However, the combined effect of interlayer expansion and partial exfoliation on the catalytic activity is yet to be investigated. Herein, scalable synthesis of partially exfoliated citrate-intercalated NiFe LDHs with tunable interlayer space have been achieved. The effect of citrate concentration on the phase, morphology, surface elemental composition, electronic states of surface metals, and electrochemical properties are comprehensively studied. The unique structure results in improved intrinsic catalytic activity and abundant active edge sites for oxygen evolution reaction. The optimal NiFe LDHs show an overpotential of 225 mV at 10 mA cm-2, which is much smaller than that (∼305 mV) of the single-layer NiFe LDH nanosheets reported in the literature. The high catalytic activity can be mainly attributed to the combined effect between the enlarged interlayer space and the partial exfoliation/nanosheet thickness. That is, the interlayer space is related to the reaction kinetics/mechanism, while the degree of exfoliation affects the magnitude of the current density at a certain potential.

19.
J Hazard Mater ; 403: 123987, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33265026

RESUMEN

Developing highly efficient and cost-effective catalyst with tuned microstructure holds great promise in the reduction of nitroaromatic compounds under mild reaction conditions. Herein, we report a new Co@NC-MF catalyst with a fascinating hierarchical flower-like architecture in situ assembled from uniform Co@NC nanoneedles, which can function as a favorable platform for the efficient reduction of nitroaromatic compounds in the presence of NaBH4. In addition with the structural advantage, the characterization and experimental results demonstrate the enormous advantage of interfacial synergistic catalysis in enhancing the catalytic performance. The outside electron-rich N-doped carbon layer as Lewis basic sites and the inside Co nanoparticles are responsible for the adsorption of 4-nitrophenol (4-NP) and generation of active hydrogen species, respectively. This work contributes to the construction of well-integrated composites with well-balanced interface synergy to boost the catalytic performance in various heterogeneous reactions.

20.
J Colloid Interface Sci ; 585: 61-71, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33279707

RESUMEN

The direct oxidation of styrene into high-value chemicals under mild reaction conditions remains a great challenge in both academia and industry. Herein, we report a successful electronic structure modulation of intrinsic NiO sheets via Mn-doping towards the oxidation of styrene. By doping NiO with only a small content of Mn (Mn/Ni atomic ratio of 0.030), a 75.0% yield of STO can be achieved under the optimized reaction conditions, which is 2.13 times higher than that of the pure NiO. In addition, the catalyst exhibits robust stability and good recycling performance. The performance enhancement originates from the synergistic effect regarding the abundant Ni(II) species, the rich oxygen vacancy sites and the large amount of surface redox centers. This work provides new findings of the elemental-doping-induced multifunctionality in designing powerful catalysts for the efficient and selective oxidation of styrene and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...