Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755583

RESUMEN

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Asunto(s)
Pradera , Herbivoria , China , Clima Desértico , Suelo/química , Fósforo/metabolismo , Fósforo/análisis , Conservación de los Recursos Naturales , Nitrógeno/metabolismo , Poaceae , Carbono/metabolismo , Ecosistema , Nutrientes/metabolismo , Restauración y Remediación Ambiental/métodos , Animales
2.
Anal Chem ; 96(14): 5546-5553, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551480

RESUMEN

The detection of lysine acetyltransferases is crucial for diagnosing and treating lung cancer, highlighting the necessity for highly efficient detection methods. We developed a portable, highly accurate, and sensitive technique using fast-scan cyclic voltammetry (FSCV) to determine the activity of the lysine acetyltransferase TIP60, employing a novel miniature electrochemical sensor. This approach involves a compact electrochemical cell, merely 3 mm in diameter, that holds solutions up to 50 µL, equipped with a conductive indium tin oxide working electrode. Uniquely, this system operates on a two-electrode model compatible with the FSCV, obviating the traditional requirement for a reference electrode. The system detects TIP60 activity through the continuous generation of CoA molecules that engage in reactions with Cu(II), thereby significantly improving the accuracy of the acetylation analysis. Remarkably, the detection limit achieved for TIP60 is notably low at 3.3 pg/mL (S/N = 3). The results show that the reversible dynamic acetylation can be effectively regulated by inhibitor incubation and glucose stimulation. This cutting-edge strategy enhances the analysis of a broad spectrum of biomarkers by modifying the responsive unit, and its miniaturization and portability significantly amplify its applicability in biomedical research, promising it to be a versatile tool for early diagnostic and therapeutic interventions in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Lisina Acetiltransferasas , Humanos , Neoplasias Pulmonares/diagnóstico , Técnicas Electroquímicas
3.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464029

RESUMEN

OBJECTIVE: Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recently, we showed that acinar to ductal metaplasia, an injury repair program, is characterized by a transcriptomic program similar to gastric spasmolytic polypeptide expressing metaplasia (SPEM), suggesting common mechanisms of reprogramming between the stomach and pancreas. The aims of this study were to assay IPMN for pyloric markers and to identify molecular drivers of this program. DESIGN: We analyzed RNA-seq studies of IPMN for pyloric markers, which were validated by immunostaining in patient samples. Cell lines expressing Kras G12D +/- GNAS R201C were manipulated to identify distinct and overlapping transcriptomic programs driven by each oncogene. A PyScenic-based regulon analysis was performed to identify molecular drivers in the pancreas. Expression of candidate drivers was evaluated by RNA-seq and immunostaining. RESULTS: Pyloric markers were identified in human IPMN. GNAS R201C drove expression of these markers in cell lines and siRNA targeting of GNAS R201C or Kras G12D demonstrates that GNAS R201C amplifies a mucinous, pyloric phenotype. Regulon analysis identified a role for transcription factors SPDEF, CREB3L1, and CREB3L4, which are expressed in patient samples. siRNA-targeting of Spdef inhibited mucin production. CONCLUSION: De novo expression of a SPEM phenotype has been identified in pancreatitis and a pyloric phenotype in Kras G12D -driven PanIN and Kras G12D ;GNAS R201C -driven IPMN, suggesting common mechanisms of reprogramming between these lesions and the stomach. A transition from a SPEM to pyloric phenotype may reflect disease progression and/or oncogenic mutation. IPMN-specific GNAS R201C amplifies a mucinous phenotype, in part, through SPDEF.

4.
Animals (Basel) ; 14(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338065

RESUMEN

Cancer is the leading cause of death in both humans and companion animals. Canine mammary tumor is an important disease with a high incidence and metastasis rate, and its poor prognosis remains a serious clinical challenge. C6 ceramide is a short-chain sphingolipid metabolite with powerful potential as a tumor suppressor. However, the specific impact of C6 ceramide on canine mammary cancer remains unclear. However, the effects of C6 ceramide in canine mammary cancer are still unclear. Therefore, we investigated the role of C6 ceramide in the progress of canine mammary cancer and explored its potential mechanism. C6 ceramide inhibited cell growth by regulating the cell cycle without involving apoptosis. Additionally, C6 ceramide inhibited the migration and invasion of CHMp cells. In vivo, C6 ceramide decreased tumor growth and metastasis in the lungs without side effects. Further investigation found that the knockdown of EGR3 expression led to a noticeable increase in proliferation and migration by upregulating the expressions of pJAK1 and pSTAT3, thus activating the JAK1/STAT3 signaling pathway. In conclusion, C6 ceramide inhibits canine mammary cancer growth and metastasis by targeting EGR3 through the regulation of the JAK1/STAT3 signaling pathway. This study implicates the mechanisms underlying the anti-tumor activity of C6 ceramide and demonstrates the potential of EGR3 as a novel target for treating canine mammary cancer.

5.
Hear Res ; 443: 108967, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335624

RESUMEN

Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Animales , Humanos , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Ruido , Umbral Auditivo/fisiología , Pérdida de Audición Oculta , Percepción Auditiva , Cóclea , Sinapsis , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología
6.
Mol Pharm ; 21(2): 944-956, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38270082

RESUMEN

T cell immunoglobulin and mucin domain-3 (TIM3; HAVCR2) is a transmembrane protein that exerts negative regulatory control over T cell responses. Studies have demonstrated an upregulation of TIM3 expression in tumor-infiltrating lymphocytes (TILs) in cancer patients. In this investigation, a series of monoclonal antibodies targeting TIM3 were produced by hybridoma technology. Among them, C23 exhibited favorable biological properties. To enable specific binding, we developed a 124I/125I-C23 radio-tracer via N-bromosuccinimide (NBS)-mediated labeling of the monoclonal antibody C23. Binding affinity and specificity were assessed using the 293T-TIM3 cell line, which overexpresses TIM3, and the parent 293T cells. Furthermore, biodistribution and in vivo imaging of 124I/125I-C23 were examined in HEK293TIM3 xenograft models and allograft models of 4T1 (mouse breast cancer cells) and CT26 (mouse colon cancer cells). Micro-PET/CT imaging was conducted at intervals of 4, 24, 48, 72, and/or 96 h post intravenous administration of 3.7-7.4 MBq 124I-C23 in the respective model mice. Additionally, immunohistochemistry (IHC) staining of TIM3 expression in dissected tumor organs was performed, along with an assessment of the corresponding expression of Programmed Death 1 (PD1), CD3, and CD8 in the tumors. The C23 monoclonal antibody (mAb) specifically binds to TIM3 protein with a dissociation constant of 23.28 nM. The 124I-C23 and 125I-C23 radio-tracer were successfully prepared with a labeling yield of 83.59 ± 0.35% and 92.35 ± 0.20%, respectively, and over 95.00% radiochemical purity. Stability results indicated that the radiochemical purity of 124I/125I-C23 in phosphate-buffered saline (PBS) and 5% human serum albumin (HSA) was still >80% after 96 h. 125I-C23 uptake in 293T-TIM3 cells was 2.80 ± 0.12%, which was significantly higher than that in 293T cells (1.08 ± 0.08%), and 125I-C23 uptake by 293T-TIM3 cells was significantly blocked at 60 and 120 min in the blocking groups. Pharmacokinetics analysis in vivo revealed an elimination time of 14.62 h and a distribution time of 0.4672 h for 125I-C23. Micro-PET/CT imaging showed that the 124I-C23 probe uptake in the 293T-TIM3 model significantly differed from that of the negative control group and blocking group. In the humanized mouse model, the 124I-C23 probe had obvious specific uptake in the 4T1 and CT26 models and maximum uptake at 24 h in tumor tissues (SUVmax (the maximum standardized uptake value) in 4T1 and CT26 humanized TIM3 murine tumor models: 0.59 ± 0.01 and 0.76 ± 0.02, respectively). Immunohistochemistry of tumor tissues from these mouse models showed comparable TIM3 expression. CD3 and CD8 cells and PD-1 expression were also observed in TIM3-expressing tumor tissues. The TIM3-targeting antibody C23 showed good affinity and specificity. The 124I/125I-C23 probe has obvious targeting specificity for TIM3 in vitro and in vivo. Our results suggest that 124I/125I-C23 is a promising tracer for TIM3 imaging and may have great potential in monitoring immune checkpoint drug efficacy.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Radioisótopos de Yodo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Distribución Tisular
7.
J Pain Res ; 17: 321-334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283563

RESUMEN

Purpose: This study aimed to investigate changes in metabolomic expression in the spinal dorsal horn (SDH) and thalamus during a Tuina session, aiming to elucidate the mechanism of immediate analgesia. Methods: The rats were randomly divided into three groups: the Sham group, the Model group, and the Tuina group. A minor chronic constriction injury (minor CCI) model was established in both the Model group and the Tuina group. The therapeutic effect of Tuina was determined using the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests. Differential metabolites of the SDH and thalamus were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatic analysis was performed using CV, PCA, Venn, and KEGG. Results: The therapeutic effect of MWT and TWL after instant Tuina intervention was significant. The therapeutic effect of Tuina instant was significantly better compared to the Model group. In the Veen analysis, it was found that Tuina instantly regulates 10 differential metabolites in the SDH and 5 differential metabolites in the thalamus. In the KEGG enrichment analysis, we found that differential metabolites were enriched in 43 pathways in the thalamus and 70 pathways in the SDH. Conclusion: Tuina therapy may have analgesic effects by metabolizing neurotransmitters such as 2-Picolinic Acid, 5-Hydroxy-Tryptophan Glutathione Betaine-aldehyde-chloride Leucine Lysine Methionine Sarcosine Succinic Acid Histidine Acetylcholine and 5-Hydroxyindoleacetic Acid through the cAMP pathway. It also affects pathways of neurodegeneration-multiple diseases, butanoate metabolism, tyrosine metabolism.

8.
Carbohydr Polym ; 329: 121763, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286540

RESUMEN

Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/farmacología , Preparaciones Farmacéuticas , Administración Oral , Sistemas de Liberación de Medicamentos , Disponibilidad Biológica , Solubilidad
9.
Trends Hear ; 28: 23312165241227818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38291713

RESUMEN

The past decade has seen a wealth of research dedicated to determining which and how morphological changes in the auditory periphery contribute to people experiencing hearing difficulties in noise despite having clinically normal audiometric thresholds in quiet. Evidence from animal studies suggests that cochlear synaptopathy in the inner ear might lead to auditory nerve deafferentation, resulting in impoverished signal transmission to the brain. Here, we quantify the likely perceptual consequences of auditory deafferentation in humans via a physiologically inspired encoding-decoding model. The encoding stage simulates the processing of an acoustic input stimulus (e.g., speech) at the auditory periphery, while the decoding stage is trained to optimally regenerate the input stimulus from the simulated auditory nerve firing data. This allowed us to quantify the effect of different degrees of auditory deafferentation by measuring the extent to which the decoded signal supported the identification of speech in quiet and in noise. In a series of experiments, speech perception thresholds in quiet and in noise increased (worsened) significantly as a function of the degree of auditory deafferentation for modeled deafferentation greater than 90%. Importantly, this effect was significantly stronger in a noisy than in a quiet background. The encoding-decoding model thus captured the hallmark symptom of degraded speech perception in noise together with normal speech perception in quiet. As such, the model might function as a quantitative guide to evaluating the degree of auditory deafferentation in human listeners.


Asunto(s)
Pérdida Auditiva , Percepción del Habla , Animales , Humanos , Umbral Auditivo/fisiología , Ruido/efectos adversos , Estimulación Acústica , Percepción Auditiva/fisiología
11.
Eur J Nucl Med Mol Imaging ; 51(5): 1221-1232, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38062170

RESUMEN

PURPOSE: Gastric cancer (GC), one of the most prevalent and deadliest tumors worldwide, is often diagnosed at an advanced stage with limited treatment options and poor prognosis. The development of a CLDN18.2-targeted radioimmunotherapy probe is a potential treatment option for GC. METHODS: The CLDN18.2 antibody TST001 (provided by Transcenta) was conjugated with DOTA and radiolabeled with the radioactive nuclide 177Lu. The specificity and targeting ability were evaluated by cell uptake, imaging and biodistribution experiments. In BGC823CLDN18.2/AGSCLDN18.2 mouse models, the efficacy of [177Lu]Lu-TST001 against CLDN18.2-expressing tumors was demonstrated, and toxicity was evaluated by H&E staining and blood sample testing. RESULTS: [177Lu]Lu-TST001 was labeled with an 99.17%±0.32 radiochemical purity, an 18.50 ± 1.27 MBq/nmol specific activity and a stability of ≥ 94% after 7 days. It exhibited specific and high tumor uptake in CLDN18.2-positive xenografts of GC mouse models. Survival studies in BGC823CLDN18.2 and AGSCLDN18.2 tumor-bearing mouse models indicated that a low dose of 5.55 MBq and a high dose of 11.10 MBq [177Lu]Lu-TST001 significantly inhibited tumor growth compared to the saline control group, with the 11.1 MBq group showing better therapeutic efficacy. Histological staining with hematoxylin and eosin (H&E) and Ki67 immunohistochemistry of residual tissues confirmed tumor tissue destruction and reduced tumor cell proliferation following treatment. H&E showed that there was no significant short-term toxicity observed in the heart, spleen, stomach or other important organs when treated with a high dose of [177Lu]Lu-TST001, and no apparent hematotoxicity or liver toxicity was observed. CONCLUSION: In preclinical studies, [177Lu]Lu-TST001 demonstrated significant antitumor efficacy with acceptable toxicity. It exhibits strong potential for clinical translation, providing a new promising treatment option for CLDN18.2-overexpressing tumors, including GC.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Animales , Ratones , Radioinmunoterapia/métodos , Xenoinjertos , Neoplasias Gástricas/radioterapia , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Lutecio/uso terapéutico , Claudinas
12.
Food Chem ; 437(Pt 1): 137636, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37866340

RESUMEN

This study aimed to evaluate the contribution and mechanisms of Lactobacillus plantarum and Zygosaccharomyces mellis inoculation to the enhancement of aroma in low-salt dry-cured mackerel (LDCM). Inoculating probiotics significantly improved the LDCM's aroma, with mixed probiotics showing a superior effect. The contents of lipid-derived volatile flavor compounds (LVFCs), free fatty acid contents, and key enzyme activities significantly increased (p < 0.05) in probiotic-treated groups. The dominant species in the probiotics-treated groups were the inoculated Lactobacillus plantarum and Zygosaccharomyces mellis, which were the main producer of metabolic enzymes for the generation of LVFCs. Lactobacillus plantarum performed well in lipid hydrolysis and aldehydes reduction, while Zygosaccharomyces mellis played a main role in aldehyde production.


Asunto(s)
Lactobacillus plantarum , Probióticos , Saccharomycetales , Lactobacillus plantarum/metabolismo , Probióticos/metabolismo , Lípidos
13.
ACS Pharmacol Transl Sci ; 6(12): 1829-1840, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093841

RESUMEN

Recent global clinical trials have shown that CLDN18.2 is an ideal target for the treatment of gastric cancer and that patients with high CLDN18.2 expression can benefit from targeted therapy. Therefore, accurate and comprehensive detection of CLDN18.2 expression is important for patient screening and guidance in anti-CLDN18.2 therapy. Phage display technology was used to screen CLDN18.2-specific peptides from 100 billion libraries. 293TCLDN18.1 cells were used to exclude nonspecific binding and CLDN18.1 binding sequences, while 293TCLDN18.2 cells were used to screen CLDN18.2-specific binding peptides. The monoclonal clones obtained from phage screening were sequenced, and peptides were synthesized based on the sequencing results. Binding specificity and affinity were assessed with a fluorescein isothiocyanate (FITC)-conjugated peptide. A 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated peptide was also synthesized for 68Ga radiolabeling. The in vitro and in vivo stability, partition coefficients, in vivo molecular imaging, and biodistribution were also characterized. Overall, 54 monoclonal clones were selected after phage display screening. Subsequently, based on the cell ELISA results, CLDN18.2 preference monoclonal clones were selected for deoxyribonucleic acid (DNA) sequencing, and four 7-peptide sequences were obtained after sequence comparison; among them, a peptide named T37 was further validated in vitro and in vivo. The T37 peptide specifically recognized CLDN18.2 but not CLDN18.1 and bound strongly to CLDN18.2-positive cell membranes. The 68Ga-DOTA-T37 probe exhibits good in vitro properties and high stability as a hydrophilic probe; it has high biological safety, and positron emission tomography/computed tomography (PET/CT) studies have shown that it can specifically target CLDN18.2 protein and CLDN18.2-positive tumors in mice. 68Ga-DOTA-T37 demonstrated the superiority and feasibility of using a CLDN18.2-specific probe in PCT/CT imaging, which deserves further development and exploitation.

14.
J Pharm Anal ; 13(10): 1221-1231, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38024853

RESUMEN

Fatty acids (FAs), which were initially recognized as energy sources and essential building blocks of biomembranes, serve as the precursors of important signaling molecules. Tracing FA metabolism is essential to understanding the biochemical activity and role of FAs in physiological and pathological events. Inspired by the advances in click chemistry for protein enrichment, we herein established a click chemistry-based enrichment (CCBE) strategy for tracing the cellular metabolism of eicosapentaenoic acid (EPA, 20:5 n-3) in neural cells. Terminal alkyne-labeled EPA (EPAA) used as a surrogate was incubated with N2a, mouse neuroblastoma cells, and alkyne-labeled metabolites (ALMs) were selectively captured by an azide-modified resin via a Cu(I)-catalyzed azide-alkyne cycloaddition reaction for enrichment. After removing unlabeled metabolites, ALMs containing a triazole moiety were cleaved from solid-phase resins and subjected to liquid chromatography mass spectrometry (LC-MS) analysis. The proposed CCBE strategy is highly selective for capturing and enriching alkyne-labeled metabolites from the complicated matrices. In addition, this method can overcome current detection limits by enhancing MS sensitivity of targets, improving the chromatographic separation of sn-position glycerophospholipid regioisomers, facilitating structural characterization of ALMs by a specific MS/MS fragmentation signature, and providing versatile fluorescence detection of ALMs for cellular distribution. This CCBE strategy might be expanded to trace the metabolism of other FAs, small molecules, or drugs.

15.
J Med Virol ; 95(11): e29221, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009705

RESUMEN

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, poses a significant threat to public health. Angiotensin-converting enzyme 2 (ACE2) is a key receptor for SARS-CoV-2 infection. Recombinant human ACE2 (RhACE2), as a soluble supplement for human ACE2, can competitively block SARS-CoV-2 infection. In this study, a mouse organ in situ rhACE2 high aggregation model was constructed for the first time, and in vivo real-time positron emission tomography (PET) imaging of rhACE2 in the mouse model was performed using an ACE2-specific agent 68 Ga-HZ20. This radiotracer exhibits reliable radiochemical properties in vitro and maintains a high affinity for rhACE2 in vivo. In terms of probe uptake, 68 Ga-HZ20 showed a good target-to-nontarget ratio and was rapidly cleared from the circulatory system and excreted by the kidneys and urinary system. PET imaging with this radiotracer can noninvasively and accurately monitor the content and distribution of rhACE2 in the body, which clarifies that rhACE2 can aggregate in multiple organs, suggesting the preventive and therapeutic potential of rhACE2 for SARS-CoV-2 and COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , COVID-19/diagnóstico por imagen , Enzima Convertidora de Angiotensina 2 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Peptidil-Dipeptidasa A , Modelos Animales de Enfermedad
16.
J Pharm Anal ; 13(9): 999-1012, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37842661

RESUMEN

Heavy alcohol consumption results in alcoholic liver disease (ALD) with inadequate therapeutic options. Here, we first report the potential beneficial effects of ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng, against alcoholic liver injury in mice. Chronic-plus-single-binge ethanol feeding caused severe liver injury, as manifested by significantly elevated serum aminotransferase levels, hepatic histological changes, increased lipid accumulation, oxidative stress, and inflammation in the liver. These deleterious effects were alleviated by the treatment with Rk2 (5 and 30 mg/kg). Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inhibitor, Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver. Meanwhile, the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine. Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.

17.
Foods ; 12(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628021

RESUMEN

Dried salted fish is a traditional dry-cured fish that is sprinkled with salt before the curing process. With a unique flavor as well as diverse varieties, dry-cured fish is popular among consumers worldwide. The presence of various microbial communities during the curing process leads to numerous metabolic reactions, especially lipid oxidation and protein degradation, which influence the formation of flavor substances. However, during industrial curing, the quality of dry-cured fish is difficult to control, leading to the formation of products with diverse flavors. This review describes the curing process of dried salted fish, the key microorganisms involved in the curing process of typical dried salted fish products at home and abroad, and the correlation between biological metabolism and flavor formation and the underlying mechanism. This review also investigates the prospects of dried salted fish products, proposing methods for the analysis of improved curing processes and the mechanisms of dried salted fish. Through a comprehensive understanding of this review, modern production challenges can be addressed to achieve greater control of microbial growth in the system and improved product safety. In addition to advancing our understanding of the processes by which volatile flavor compounds are formed in conventional dry-cured fish products, we expect that this work will also offer a theoretical framework for enhancing their flavor in food processing.

18.
J Agric Food Chem ; 71(32): 12167-12176, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37552038

RESUMEN

Understanding the mechanism of long-lasting control efficacy of pesticides is important for developing sustainable high-efficacy pesticides, decreasing pesticide-use frequency and environmental input. This study investigates the long-term control mechanism of imidacloprid against wheat aphids under seed treatment. The concentrations of imidacloprid and its metabolites were 2.2-69.6 times lower than their individual LC50 after 238 days of treatment, and the control efficacy was still higher than 94.6%. The mixed bioactivity tests demonstrated that the insecticidal activity of the mixture of imidacloprid and its bioactive metabolites was approximately 1.5-189.7 times greater than that of a single compound against wheat aphids. The concentrations of imidacloprid, 5-hydroxy imidacloprid, and imidacloprid olefin in top flag leaves were 0.022, 0.084, and 0.034 mg/kg, respectively, during the aphid flourishing period, which were higher than the LC50 of the mixture (0.011 mg/kg), therefore providing long-lasting control efficacy. The study provides a first insight into the synergistic effects between a pesticide and its bioactive metabolites in ensuring long-term control performance.


Asunto(s)
Áfidos , Insecticidas , Animales , Áfidos/metabolismo , Imidazoles/farmacología , Imidazoles/metabolismo , Neonicotinoides , Insecticidas/farmacología , Insecticidas/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo
19.
Nanoscale ; 15(34): 14146-14154, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591823

RESUMEN

Chirality plays an important role in biological processes, and enantiomers often possess similar physical properties and different physiological functions. Thus, chiral detection of enantiomers has become a hot topic in recent years, and methods to enhance chiral molecular recognition are in urgent demand. In this work, a polarization detection method was used for different chiral drugs based on a specially designed metasurface composed of asymmetric double-opened rings and the surface enhancement effect of gold nanoparticles (GNPs). The experiment results show that the frequency shifts caused by the nearfield interaction of the metasurface and biomolecules have been significantly improved by GNPs, and both the limit of detection and detection precision of the metasurface can reach the 10-5 g ml-1 level. Moreover, the polarization sensing characterized by right circular polarization (RCP), the polarization elliptical angle (PEA), and the polarization rotation angle (PRA) shows that the enantiomers of three drugs can be distinguished, especially using the PEA spectrum; the maximum difference between enantiomers is over 30° with a precision of 6.6 × 10-7 g mL-1. Our THz polarization sensing and the GNP enhancement method inspire an efficient strategy for the highly sensitive detection of enantiomers.


Asunto(s)
Oro , Nanopartículas del Metal
20.
Phytother Res ; 37(10): 4690-4705, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37424151

RESUMEN

Ulcerative colitis (UC) has emerged as a global healthcare issue due to high prevalence and unsatisfying therapeutic measures. 20(S)- Protopanaxadiol saponins (PDS) from Panax notoginseng with anti-inflammatory properties is a potential anti-colitis agent. Herein, we explored the effects and mechanisms of PDS administration on experimental murine UC. Dextran sulfate sodium-induced murine UC model was employed to investigate anti-colitis effects of PDS, and associated mechanisms were further verified in HMGB1-exposed THP-1 macrophages. Results indicated that PDS administration exerted ameliorative effects against experimental UC. Moreover, PDS administration remarkably downregulated mRNA expressions and productions of related pro-inflammatory mediators, and reversed elevated expressions of proteins related to NLRP3 inflammasome after colitis induction. Furthermore, administration with PDS also suppressed the expression and translocation of HMGB1, interrupting the downstream TLR4/NF-κB pathway. In vitro, ginsenoside CK and 20(S)-protopanaxadiol, the metabolites of PDS, exhibited greater potential in anti-inflammation, and intervened with the TLR4-binding domain of HMGB1 predictably. Expectedly, ginsenoside CK and 20(S)-protopanaxadiol administrations inhibited the activation of TLR4/NF-κB/NLRP3 inflammasome pathway in HMGB1-exposed THP-1 macrophages. Summarily, PDS administration attenuated inflammatory injury in experimental colitis by blocking the binding of HMGB1 to TLR4, majorly attributed to the antagonistic efficacies of ginsenoside CK and 20(S)-protopanaxadiol.


Asunto(s)
Colitis Ulcerosa , Colitis , Proteína HMGB1 , Panax notoginseng , Saponinas , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Saponinas/farmacología , Panax notoginseng/química , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Colitis/inducido químicamente , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sulfato de Dextran/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...