Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetes Metab Syndr Obes ; 14: 647-657, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33603429

RESUMEN

BACKGROUND AND PURPOSE: ShengMai-San (SMS) is traditionally used to treat ischemic cardiovascular and cerebrovascular diseases. Recently, several studies have reported the cardioprotective effects of SMS in diabetic animals. However, the potential mechanisms have not yet been fully elucidated. In this study, we investigated whether SMS exerts a beneficial effect in diabetic cardiomyopathy (DCM) by alleviating NADPH oxidase (NOX)-mediated oxidative stress. METHODS: SD rats were randomly divided into a negative control group (NC), diabetes mellitus group (DM) and SMS-treated group (SMS). The myocardial structure alterations, apoptosis and biomarkers of oxidative stress were observed. Moreover, to explore the protective mechanism of SMS, the activation of AMPKα, expression and translocation of NOX-related proteins were assessed. RESULTS: Diabetes led to excessive collagen content, fibrosis, and apoptosis in the myocardium. Oxidative stress in diabetic hearts was indicated by low levels of T-AOC, high levels of 8-iso-PGF2α and 8-OHdG, inactivation of AMPKα, elevated expression of NOX2 and NOX4 and translocation of NOX isoforms p47phox and p67phox. Treatment with SMS for 10 weeks resulted in the alleviation of diabetes-associated myocardial structure abnormalities and apoptosis. Additionally, SMS attenuated the accumulation of oxidative stress markers in myocardial tissue. Further investigation showed that SMS was able to reverse the levels of oxidative stress-associated proteins NOX2 and NOX4 in the DM rats. Moreover, SMS treatment blunted the translocation of NADPH oxidase isoforms p47phox and p67phox as well. Furthermore, SMS promoted the activation of AMPK in the cardiac tissue of diabetic rats. CONCLUSION: These findings indicate that SMS exhibits therapeutic properties against diabetic cardiomyopathy by attenuating myocardial oxidative damage via activation of AMPKα and inhibition of NOX signaling.

2.
J Ethnopharmacol ; 258: 112842, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32333952

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Type 2 diabetes mellitus (T2DM) is currently one of the most prominent and global chronic conditions. Huanglian Decoction (HLD) is a traditional Chinese medicine (TCM) preparation that has been used to treat T2DM for thousands of years in China. However, its mechanism of action at the metabolic level is still unclear. The purpose of this work is to study the mechanism of HLD in treating T2DM based on metabolomics and network pharmacology. MATERIALS AND METHODS: In this study, metabolomics combined with network pharmacology was used to elucidate the therapeutic mechanism of HLD in T2DM. Serum samples were collected from rats with T2DM, induced by a high-sugar and high-fat diet combined with streptozotocin (STZ), to measure the levels of biochemical markers. Urinary metabolomics-based analysis using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) was conducted to evaluate the differential metabolites from multiple metabolic pathways. RESULTS: After treatment with HLD for 4 weeks, biochemical indicators, including fasting blood glucose (FBG), blood lipid, fasting insulin (FINS), insulin sensitivity index (ISI), and homeostasis model assessment of insulin resistance (HOMA-IR), were significantly improved. Metabolomics results revealed that HLD regulated the biomarkers, such as cytosine, L-carnitine, betaine, phenylalanine, glucose, citrate, phenylpyruvate, and hippuric acid in glyoxylate and dicarboxylate metabolism, phenylalanine metabolism, and tricarboxylic acid (TCA) cycle. The combination of network pharmacology, metabolomics, western blot, and PCR showed that HLD can treat T2DM by enhancing the gene and protein expression levels of glucose transporter 4 (GLUT4), insulin receptor (INSR), and mitogen-activated protein kinase 1 (MAPK1) to interfere with glyoxylate and dicarboxylate metabolism. CONCLUSIONS: The study based on metabolomics and network pharmacology indicated that HLD can improve T2DM through multiple targets and pathways, and it may be a useful alternative therapy for the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Hipoglucemiantes/farmacología , Animales , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Insulina/metabolismo , Masculino , Espectrometría de Masas , Medicina Tradicional China , Metabolómica , Ratas , Ratas Wistar , Estreptozocina
3.
J Cell Mol Med ; 23(10): 7021-7028, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31430030

RESUMEN

Depression is the most frequent psychiatric disorder in the world. Recent evidence has shown that stress-induced GABAergic dysfunction in the nucleus accumbens (NAc) contributed to the pathophysiology of depression. However, the molecular mechanisms underlying these pathological changes remain unclear. In this study, mice were constantly treated with the chronic unpredictable mild stress (CUMS) till showing depression-like behaviours expression. GABA synthesis, release and uptake in the NAc tissue were assessed by analysing the expression level of genes and proteins of Gad-1, VGAT and GAT-3 by qRT-PCR and Western blotting. The miRNA/mRNA network regulating GABA was constructed based on the bioinformatics prediction software and further validated by dual-luciferase reporter assay in vitro and qRT-PCR in vivo, respectively. Our results showed that the expression level of GAT-3, Gad-1 and VGAT mRNA and protein significantly decreased in the NAc tissue from CUMS-induced depression-like mice than that of control mice. However, miRNA-144-3p, miRNA-879-5p, miR-15b-5p and miRNA-582-5p that directly down-regulated the expression of Gad-1, VGAT and GAT-3 were increased. In the mRNA/miRNA regulatory GABA network, Gad-1 and VGAT were directly regulated by binding seed sequence of miR-144-3p, and miR-15b-5p, miR-879-5p could be served negative post-regulators by binding to the different sites of VGAT 3'-UTR. Chronic stress causes the impaired GABA synthesis, release and uptake by up-regulating miRNAs and down-regulating mRNAs and proteins, which may reveal the molecular mechanisms for the decreased GABA concentrations in the NAc tissue of CUMS-induced depression.


Asunto(s)
Conducta Animal , Trastorno Depresivo/fisiopatología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Animales , Enfermedad Crónica , Trastorno Depresivo/etiología , Trastorno Depresivo/genética , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Modelos Lineales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Red Nerviosa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Ácido gamma-Aminobutírico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA