Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(42): 39596-39603, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901562

RESUMEN

Chitosan has emerged as a promising biopolymer carrier for the sustained release of pesticides owing to its good biocompatibility, biodegradability, and bioactivity. In this work, a controlled-release formulation of insecticide chlorantraniliprole was fabricated through coprecipitation-based synchronous encapsulation with chitosan, where the optimum preparation conditions, storage stability, deposition behavior, and application potential were investigated. Preparation of optimization data from response surface methodology showed high correlation coefficient (R2) of 0.9875 and adjusted coefficient (Radj2) of 0.9715. The resulting formulation displayed good loading content of 28.39%, high encapsulation efficiency of 75.71%, and good storage stability. Compared with the commercial suspension concentrate, the formulation exhibited better wettability and retention behaviors on plant leaves. Excitingly, effective control against one species of mealybug genus Paraputo Laing (outside the killing spectrum) on the Hippeastrum reticulatum plant was successfully achieved by spraying the controlled-release formulation at different time intervals. This work indicates the good potential of the developed formulation in expanding the application scope of chlorantraniliprole, which shows a new strategy for sustainable pest management.

2.
Pest Manag Sci ; 79(10): 3757-3766, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37198750

RESUMEN

BACKGROUND: Controlled-release pesticide formulations have emerged as a promising approach towards sustainable pest control. Herein, an environment-friendly formulation of insecticide chlorantraniliprole (CAP) was fabricated through a simple approach of coprecipitation-based synchronous encapsulation by chitosan (CTS), with carrier-pesticide interaction mechanism and release behavior investigated. RESULTS: The resulting CAP/CTS controlled-release formulation (CCF) showed a good loading content of 28.1% and a high encapsulation efficiency of 75.6%. Instrument determination in combination with molecular dynamics (MD) simulations displayed that the primary interactions between CAP and CTS were physical adsorption and complicated hydrogen (H)-bonds, which formed dominantly between NH in amides [or nitrogen (N) in ring structures] of CAP and hydroxyl (or amino) groups of CTS, as well as oxygen (O) in CAP with hydrogen in CTS or H2 O molecules. The in vitro release tests exhibited obvious pH/temperature sensitivity, with release dynamics following the first-order or Ritger-Peppas model. As the temperature increased, the CAP release process of the Ritger-Peppas model changed from Case-II to anomalous transport, and ultimately to a Fickian diffusion mechanism. The control effect against Plutella xylostella larvae also was evaluated by toxicity tests, where comparable efficacy of CCF to the commercial suspension concentrate was obtained. CONCLUSION: The innovative, easy-to-prepare CCF can be used as a formulation with obvious pH/temperature sensitivity and good efficacy on target pests. This work contributes to the development of efficient and safe pesticide delivery systems, especially using the natural polymer materials as carriers. © 2023 Society of Chemical Industry.


Asunto(s)
Quitosano , Insecticidas , Plaguicidas , Animales , Quitosano/química , Preparaciones de Acción Retardada
3.
Front Immunol ; 13: 964138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091018

RESUMEN

Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.


Asunto(s)
Apolipoproteínas E , Macrófagos , Microglía , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/inmunología , Biología Computacional , Macrófagos/inmunología , Ratones , Microglía/inmunología , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/inmunología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/inmunología
4.
J Geriatr Cardiol ; 19(5): 367-376, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35722036

RESUMEN

BACKGROUND: Three-vessel disease (TVD) with a SYNergy between PCI with TAXus and cardiac surgery (SYNTAX) score of ≥ 23 is one of the most severe types of coronary artery disease. We aimed to take advantage of machine learning to help in decision-making and prognostic evaluation in such patients. METHODS: We analyzed 3786 patients who had TVD with a SYNTAX score of ≥ 23, had no history of previous revascularization, and underwent either coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI) after enrollment. The patients were randomly assigned to a training group and testing group. The C4.5 decision tree algorithm was applied in the training group, and all-cause death after a median follow-up of 6.6 years was regarded as the class label. RESULTS: The decision tree algorithm selected age and left ventricular end-diastolic diameter (LVEDD) as splitting features and divided the patients into three subgroups: subgroup 1 (age of ≤ 67 years and LVEDD of ≤ 53 mm), subgroup 2 (age of ≤ 67 years and LVEDD of > 53 mm), and subgroup 3 (age of > 67 years). PCI conferred a patient survival benefit over CABG in subgroup 2. There was no significant difference in the risk of all-cause death between PCI and CABG in subgroup 1 and subgroup 3 in both the training data and testing data. Among the total study population, the multivariable analysis revealed significant differences in the risk of all-cause death among patients in three subgroups. CONCLUSIONS: The combination of age and LVEDD identified by machine learning can contribute to decision-making and risk assessment of death in patients with severe TVD. The present results suggest that PCI is a better choice for young patients with severe TVD characterized by left ventricular dilation.

5.
Orthop Surg ; 14(3): 566-576, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35156312

RESUMEN

OBJECTIVE: To investigate the cervical alignment and the relative range of motion (ROM) in patients with basilar invagination (BI). METHODS: A total of 40 BI cases (38.1 years old ± 17.9 years old, 19 male and 21 female) and 80 asymptomatic individuals (33.8 years old ± 10.8 years old, 40 male and 40 female) were included. The Skull-C2 /Skull-BV, Skull-C7 , C2 -C7 /BV-C7 wall angles, C0 -C2 /C0 -BV, C0 -C7 , C1 -C7 , and C2 -C7 /BV-C7 angles were measured in dynamic X-ray images (including neutral, extension, and flexion positions). Correlation between the upper and lower cervical curvatures were analyzed. The total, extension, and flexion ROMs of these angles were calculated, respectively. RESULTS: The BI patients had a smaller C0 -C2 /C0 -BV angle (18.2° ± 16.4° vs 30.9° ± 9.3°), but larger C2 -C7 /BV-C7 (32.2° ± 16.1° vs 19.4° ± 10.6°) and C2 -C7 /BV-C7 wall angles (37.8° ± 17.2° vs 23.6° ± 10.2°) than the control group in neutral position. The upper and lower curvatures correlated negatively in neutral (r = -0.371), extension (r = -0.429), and flexion (r = -0.648) positions among BI patients, as well as in extension position (r = -0.317) among control group. The BI patients presented smaller total ROMs in Skull-C2 /Skull-BV (12.3° ± 16.6° vs 19.7° ± 10.9°), C0 -C2 /C0 -BV (8.1° ± 11.1° vs 17.6° ± 10.5°), and C0 -C7 angles (57.8° ± 14.2° vs 78.3° ± 17.9°), but a larger total ROM in C2 -C7 /BV-C7 wall angle (52.8° ± 13.9° vs 27.0° ± 16.1°) than the control group. The BI patients also presented smaller extension ROMs in Skull-C2 /Skull-BV (6.9° ± 9.4° vs 12.5° ± 9.3°), Skull-C7 (24.5° ± 10.9° vs 30.7° ± 12.5°), and C0 -C2 /C0 -BV angles (4.4° ± 7.8° vs 9.9° ± 8.6°) than the control group. Moreover, the BI patients showed smaller absolute values of flexion ROMs in Skull-C2 /Skull-BV (-5.2° ± 9.4° vs -7.3° ± 8.0°), C0 -C2 /C0 -BV (-3.2° ± 8.8° vs -7.7° ± 8.7°), and C0 -C7 angles (-33.2° ± 13.0° vs -52.8° ± 19.2°), but a larger absolute value of flexion ROM in C2 -C7 /BV-C7 wall angle (-33.9° ± 14.8° vs -8.2° ± 15.1°). CONCLUSION: The cervical spine was stiffer in BI patients than the asymptomatic individuals, especially in the upper cervical curvature. The negative correlation between upper and lower cervical curvatures was more obvious in BI patients.


Asunto(s)
Vértebras Cervicales , Adulto , Vértebras Cervicales/diagnóstico por imagen , Femenino , Humanos , Masculino , Radiografía , Rango del Movimiento Articular
6.
J Gastroenterol Hepatol ; 37(4): 700-713, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35030640

RESUMEN

BACKGROUND AND AIM: Colorectal cancer (CRC) is one of the major health issues in the world. Circ_0000677 has been shown to be upregulated in CRC with unclarified function and mechanism. Methyltransferase-like 3 (METTL3) acts as a regulator for gene expression via the mechanism of RNA N6 -methyladenosine (m6 A) in different types of cancer, which is under the control of SUMO1-based SUMOylation. We aim to investigate their roles in CRC progression. METHODS: Quantitative real-time polymerase chain reaction and Western blot were used to detect the expressions of METTL3, circ_0000677, and ATP binding cassette subfamily c member 1(ABCC1) in CRC patients' tissues and cell lines. The functions of ABCC1 and circ_0000677 in CRC were studied by manipulating their level via knocking down or overexpression. RNA pull-down and RNA immunoprecipitation assays were performed to identify the specific binding of target genes. The biological function of SUMOylation of METTL3 was investigated in vivo by xenograft mice tumor model. RESULTS: METTL3, circ_0000677, and ABCC1 were upregulated in CRC patients' samples and cell lines. Circ_0000677 positively regulates CRC cell proliferation and drug resistance via affecting ABCC1 expression. METTL3 facilitated circ_0000677 level via m6 A modification. METTL3 was regulated by SUMO1-mediated SUMOylation in CRC. Mutation of METTL3-K459 could suppress tumor growth in vivo via regulating circ_0000677/ABCC1 axis. CONCLUSIONS: Overall, our study revealed that circ_0000677 and its downstream target ABCC1 were upregulated in CRC cells, induced by the METTL3-mediated m6 A modification of circ_0000677 and SUMO1-mediated SUMOylation of METTL3. This work provided a new strategy for the therapeutic treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Metiltransferasas , Animales , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Humanos , Metiltransferasas/genética , Ratones , Sumoilación/genética
7.
Sheng Li Xue Bao ; 73(5): 707-722, 2021 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-34708228

RESUMEN

Glucose and lipid metabolism is the most fundamental metabolic activity of higher organisms. This process is affected by both genetic polymorphisms and environmental factors. Excessive uptake and accumulation of lipids lead to obesity and disorder of glucose metabolic homeostasis characterized by insulin resistance and hyperglycemia, suggesting that the cross-regulation between lipid and glucose metabolism happens precisely at organ, cellular and molecular levels by known mechanisms. Adenine nucleotides and their metabolites have emerged as mediators in the mutual regulation of glucose and lipid metabolism. This review summarizes the roles of purinergic signaling induced by fatty acids in glucose metabolism and the development of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Nucleótidos de Adenina , Glucosa , Homeostasis , Humanos , Metabolismo de los Lípidos
8.
FASEB J ; 35(7): e21735, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34143440

RESUMEN

Neuroinflammation is recognized as a hallmark of spinal cord injury (SCI). Although neuroinflammation is an important pathogenic factor that leads to secondary injuries after SCI, neuroprotective anti-inflammatory treatments remain ineffective in the management of SCI. Moreover, the molecular signatures involved in the pathophysiological changes that occur during the course of SCI remain ambiguous. The current study investigated the proteins and pathways involved in C5 spinal cord hemi-contusion injury using a rat model by means of 4-D label-free proteomic analysis. Furthermore, two Gene Expression Omnibus (GEO) transcriptomic datasets, Western blot assays, and immunofluorescent staining were used to validate the expression levels and localization of dysregulated proteins. The present study observed that the rat models of SCI were associated with the enrichment of proteins related to the complement and coagulation cascades, cholesterol metabolism, and lysosome pathway throughout the acute and subacute phases of injury. Intriguingly, the current study also observed that 75 genes were significantly altered in both the GEO datasets, including ANXA1, C1QC, CTSZ, GM2A, GPNMB, and PYCARD. Further temporal clustering analysis revealed that the continuously upregulated protein cluster was associated with immune response, lipid regulation, lysosome pathway, and myeloid cells. Additionally, five proteins were further validated by means of Western blot assays and the immunofluorescent staining showed that these proteins coexisted with the F4/80+ reactive microglia and infiltrating macrophages. In conclusion, the proteomic data pertaining to the current study indicate the notable proteins and pathways that may be novel therapeutic targets for the treatment of SCI.


Asunto(s)
Contusiones/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Inmunidad/fisiología , Macrófagos/metabolismo , Masculino , Microglía/metabolismo , Células Mieloides/metabolismo , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
9.
Opt Express ; 29(8): 12266-12277, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984990

RESUMEN

Tunable high-order sideband generation has important applications in the realization of the optical frequency comb with a varying spectral region (corresponding to the sideband range) and frequency resolution (corresponding to the sideband interval). In this paper, we propose a theoretical scheme to tune both the range and the interval of the high-order sidebands in a coupled double-cavity optomechanical system, which consists of an optomechanical cavity and an auxiliary cavity. Our proposal can be realized by driving the optomechanical cavity with a control field and a probe field simultaneously, driving the auxiliary cavity with a pump field. Furthermore, we assume that the frequency detuning between the control field and the probe field (the pump field) equals ωb/n (ωb/m), where ωb is the mechanical frequency, m and n are integers. When n = m = 1, we find that the sideband range can be effectively enlarged by increasing the pump amplitude or the photon-hopping coupling rate, or by decreasing the auxiliary cavity damping rate. When n = 1 and m > 1, the output spectrum consists of a series of integer-order sidebands, fraction-order sidebands, and the sum and difference sidebands, and the sideband interval becomes ωb/m and can be diminished by simultaneously increasing m and the pump amplitude.

10.
Tissue Cell ; 72: 101540, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33838353

RESUMEN

OBJECTIVE: To investigate whether miR-105 can regulate the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) by targeting SOX9. METHODS: The hADSCs were grouped for subsequent transfection and induction of osteogenic differentiation as follows: control, miR-NC, miR-105 mimics, miR-105 inhibitors, SOX9, SOX9 siRNA, miR-105 mimics + SOX9 and miR-105 inhibitors + SOX9 siRNA groups. Next, hADSCs were stained for alkaline phosphatase (ALP), and Alizarin Red S staining (ARS) was performed. Osteogenic differentiation-related genes and miR-105 expression were assessed by qRT-PCR, while SOX9 protein expression was determined by Western blotting. RESULTS: MiR-105 expression was increased and SOX9 protein expression was decreased during the osteogenic differentiation of hADSCs. A dual-luciferase reporter assay confirmed SOX9 to be a target gene of miR-105. Compared with the control group, the miR-105 mimics and SOX9 siRNA groups had elevated BMP2, OPN, OCN, BSP, Osx and Runx2 mRNA expression with reduced SOX9 expression, as well as increased ARS intensity and ALP activity. After transfection of miR-105 inhibitors/SOX9 into hADSCs, the results were the opposite. Overexpressing SOX9 reversed the effect of miR-105 in promoting the osteogenic differentiation of hADSCs. CONCLUSION: MiR-105 could target SOX9 to improve the expression of osteogenic differentiation genes and thus enhance the osteogenic differentiation of hADSCs.


Asunto(s)
Diferenciación Celular/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Osteogénesis/genética , Factor de Transcripción SOX9/genética , Adulto , Fosfatasa Alcalina/metabolismo , Secuencia de Bases , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Factor de Transcripción SOX9/metabolismo
11.
Neural Regen Res ; 16(7): 1323-1330, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33318412

RESUMEN

Fine motor skills are thought to rely on the integrity of ascending sensory pathways in the spinal dorsal column as well as descending motor pathways that have a neocortical origin. However, the neurophysiological processes underlying communication between the somatosensory and motor pathways that regulate fine motor skills during spontaneous recovery after spinal cord contusion injury remain unclear. Here, we established a rat model of cervical hemicontusive injury using C5 laminectomy followed by contusional displacement of 1.2 mm (mild injury) or 2.0 mm (severe injury) to the C5 spinal cord. Electrophysiological recordings were performed on the brachial muscles up to 12 weeks after injury to investigate the mechanisms by which spinal cord pathways participate in motor function. After spinal cord contusion injury, the amplitudes of somatosensory and motor-evoked potentials were reduced, and the latencies were increased. The forelimb open field locomotion test, grooming test, rearing test and Montoya staircase test revealed improvement in functions. With increasing time after injury, the amplitudes of somatosensory and motor-evoked potentials in rats with mild spinal cord injury increased gradually, and the latencies gradually shortened. In comparison, the recovery times of somatosensory and motor-evoked potential amplitudes and latencies were longer, and the recovery of motor function was delayed in rats with severe spinal cord injury. Correlation analysis revealed that somatosensory-evoked potential and motor-evoked potential parameters were correlated with gross and fine motor function in rats with mild spinal cord contusion injury. In contrast, only somatosensory-evoked potential amplitude was correlated with fine motor skills in rats with severe spinal cord injury. Our results show that changes in both somatosensory and motor-evoked potentials can reflect the changes in gross and fine motor functions after mild spinal cord contusion injury, and that the change in somatosensory-evoked potential amplitude can also reflect the change in fine motor function after severe spinal cord contusion injury. This study was approved by the Animal Ethics Committee of Nanfang Hospital, Southern Medical University, China (approval No. NFYY-2017-67) on June 11, 2017.

12.
Opt Lett ; 45(18): 5169-5172, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932480

RESUMEN

We propose a scheme for generating a new kind of sideband, i.e., the fraction-order sideband, in an optomechanical system. In the conventional scheme of high-order sideband generation [Opt. Lett.38, 353 (2013)OPLEDP0146-959210.1364/OL.38.000353], the sideband interval has a minimum frequency limitation, which is equal to the mechanical frequency ωb, and this limits the precision of the sideband comb. With our proposed fraction-order sidebands, the sideband interval can break that limitation and reach ωb/n (n is an integer). The scheme we propose can be realized by driving the optomechanical system with three laser fields, including a control field (ωc) and two probe fields (ωp, ωf), in which the detuning between ωc and ωp is equal to the mechanical frequency ωb, while the detuning between ωc and ωf is equal to ωb/n. In this case, we find that not only the integer-order (high-order) sidebands, but also the fraction-order sidebands, and the sum and difference sidebands between the integer- and fraction-order sidebands, will appear in the output spectrum. Moreover, the sideband interval becomes ωb/n, and it can be decreased by increasing n. Our work paves the way to achieve a tunable optical frequency comb based on the optomechanical system.

13.
Opt Express ; 27(11): 15382-15390, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163735

RESUMEN

We study the nonreciprocal transmission and the fast-slow light effects in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical mode; both the modes are driven simultaneously by a strong pump field and a weak signal field. We find that the system reveals a nonreciprocal transmission of the signal fields when the intrinsic photon loss of the cavity is equal to the external coupling loss of the cavity. However, when the intrinsic photon loss is much less than the external coupling loss, the nonreciprocity about the transmission properties almost disappears, the nonreciprocity is shown in the group delay properties of the signal fields, and the system exhibits a nonreciprocal fast-slow light propagation phenomenon.

14.
Opt Express ; 25(7): 7592-7603, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28380879

RESUMEN

We propose a novel scheme to generate the entanglement between two cavity optomechanical systems (COMSs) via a flying two-level atom. We derive the analytical expressions for the generated entangled states. We find that there exist two processes for generating entanglement: one is the entanglement transfer between the two phonon-modes, and the other is the entanglement swapping-like process among the two photon-modes and the two phonon-modes. We analyze these two kinds of phenomena, respectively, by adjusting the distance between the two COMSs. Then we discuss the verification of the generated entangled states of the two COMSs, and analyze the decoherence of the generated entangled states. Finally, we discuss the experimental feasibility of our proposal.

15.
Appl Opt ; 52(4): 829-37, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23385925

RESUMEN

This paper proposes a tunable-focus liquid lens implemented with a simple cylindrical container structure and liquid as the lens material. The cylindrical container was constructed using a Pb [Zr(0.52)Ti(0.48)]O(3) (PZT) ring transducer and a polydimethylsiloxane membrane that was attached to a flat side of the transducer. The free surface of the liquid in the cylindrical container can be driven as a static-like convex lens with different curvatures because the higher-order harmonic resonance of the PZT transducer was electrically controlled. Based on a capillary-force-dominant design, the activated liquid lens maintained surface curvature in an arbitrary orientation without a gravitational effect. Profiles of the liquid lenses were characterized with the driving voltages of the transducer ranging from 12 to 60 V peak-to-peak (Vpp) at a resonant frequency of 460 kHz. The temperature effects on the lenses caused by the continuous operation of the transducer were measured. Images showed the various curvatures of the lenses with a range of actuation voltages. A change in focal length of eight times (5.72 to 46.03 cm) was demonstrated within the 10 Vpp variation of the driving voltage. For the characterized liquid lenses, the distortion was less than 2%, and the modulation transfer function reached 63 line pairs per mm (lp/mm) using ZEMAX analysis.

16.
Chin Med J (Engl) ; 122(21): 2652-6, 2009 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-19951587

RESUMEN

BACKGROUND: The use of doxorubicin (DOX) is limited by its dose-dependent cardiotoxicity. Reactive oxygen species (ROSs) play an important role in the pathological process of DOX-induced cardiotoxicity. The aim of this study was to evaluate the protective effect of chrysoeriol, a flavone compound, against DOX-induced apoptosis and death in H9c2 cells and to find out its preliminary mechanism. METHODS: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, Hoechst33258 staining and measurement of lactate dehydrogenase (LDH) release to evaluate the protective effect of chrysoeriol against DOX-induced apoptosis and death in H9c2 cells. To find out the mechanism of this protective effect, we observed the immunofluorescence of intracellular ROS and measured the activities of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Furthermore, we evaluated the effect of chrysoeriol on the antitumor activity of DOX in HeLa cells with MTT assay. RESULTS: The results of MTT assay, Hoechst 33258 staining and measurement of LDH release showed that chrysoeriol significantly reduced doxorubicin-induced apoptosis and cell death. Chrysoeriol at a dose of 20 microg/ml notably reduced intracellular ROS, decreased the concentration of MDA in the supernatant of DOX-treated H9c2 cells and increased SOD and GPx activities to their normal levels. Further study showed that the addition of chrysoeriol did not affect the antitumor activity of DOX. CONCLUSION: Chrysoeriol could potentially serve as a novel cardioprotective agent against DOX-induced cardiotoxicity without affecting the antitumor activity of DOX.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Flavonoides/farmacología , Corazón/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Flavonas , Flavonoides/química , Glutatión Peroxidasa/metabolismo , Células HeLa , Humanos , L-Lactato Deshidrogenasa/metabolismo , Estructura Molecular , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...