Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 156, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977674

RESUMEN

Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics, III-V compound semiconductors, lithium niobate, organics, and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses, nonlinear properties, and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics, demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 °C, with the same deuterated silane based fabrication flow, for nitride and oxide, for an order of magnitude range in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding, enabling 1.77 dB m-1 loss and 14.9 million Q for 80 nm nitride core waveguides, more than half an order magnitude lower loss than previously reported sub 300 °C process. For 800 nm-thick nitride, we achieve as good as 8.66 dB m-1 loss and 4.03 million Q, the highest reported Q for a low temperature processed resonator with equivalent device area, with a median of loss and Q of 13.9 dB m-1 and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity, and using a thick nitride micro-resonator we demonstrate OPO, over two octave supercontinuum generation, and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.

2.
Nat Commun ; 15(1): 4972, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862491

RESUMEN

Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.

3.
Small ; : e2312218, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716754

RESUMEN

Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.

4.
ACS Appl Mater Interfaces ; 16(20): 26643-26652, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716902

RESUMEN

A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.

5.
Adv Mater ; 36(23): e2313393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573779

RESUMEN

The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.

6.
Adv Sci (Weinh) ; 11(23): e2308337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572504

RESUMEN

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

7.
Sci Adv ; 10(14): eadk0647, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569023

RESUMEN

Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.

8.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491012

RESUMEN

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Luminiscencia
9.
Nature ; 627(8004): 540-545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448598

RESUMEN

The generation of ultra-low-noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar and sensing systems1-3. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches4-7. Here we demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a complementary metal-oxide-semiconductor-compatible integrated photonic platform. Phase stability is provided by a large mode volume, planar-waveguide-based optical reference coil cavity8,9 and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator10-12. Besides achieving record-low phase noise for integrated photonic mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications13.

10.
ACS Appl Mater Interfaces ; 16(7): 8321-8332, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38330195

RESUMEN

Long-lasting and highly efficient antibacterial fabrics play a key role in public health occurrences caused by bacterial and viral infections. However, the production of antibacterial fabrics with a large size, highly efficient, and broad-spectrum antibacterial performance remains a great challenge due to the complex processes. Herein, we demonstrate sizable and highly efficient antibacterial fabrics through hydrogen bonding interaction and electrostatic interaction between surface groups of ZnO nanoparticles and fabric fibers. The production process can be carried out at room temperature and achieve a production rate of 300 × 1 m2 within 1 h. Under both visible light and dark conditions, the bactericidal rate against Gram-positive (S. aureus), Gram-negative (E. coli), and multidrug-resistant (MRSA) bacteria can reach an impressive 99.99%. Furthermore, the fabricated ZnO nanoparticle-decorated antibacterial fabrics (ZnO@fabric) show high stability and long-lasting antibacterial performance, making them easy to develop into variable antibacterial blocks for protection suits.


Asunto(s)
Escherichia coli , Óxido de Zinc , Staphylococcus aureus , Óxido de Zinc/farmacología , Enlace de Hidrógeno , Electricidad Estática , Antibacterianos/farmacología
11.
Opt Lett ; 49(1): 45-48, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134148

RESUMEN

Photonic integrated lasers with an ultra-low fundamental linewidth and a high output power are important for precision atomic and quantum applications, high-capacity communications, and fiber sensing, yet wafer-scale solutions have remained elusive. Here we report an integrated stimulated Brillouin laser (SBL), based on a photonic molecule coupled resonator design, that achieves a sub-100-mHz fundamental linewidth with greater than 10-mW output power in the C band, fabricated on a 200-mm silicon nitride (Si3N4) CMOS-foundry compatible wafer-scale platform. The photonic molecule design is used to suppress the second-order Stokes (S2) emission, allowing the primary lasing mode to increase with the pump power without phase noise feedback from higher Stokes orders. The nested waveguide resonators have a 184 million intrinsic and 92 million loaded Q, over an order of magnitude improvement over prior photonic molecules, enabling precision resonance splitting of 198 MHz at the S2 frequency. We demonstrate S2-suppressed single-mode SBL with a minimum fundamental linewidth of 71±18 mHz, corresponding to a 23±6-mHz2/Hz white-frequency-noise floor, over an order of magnitude lower than prior integrated SBLs, with an ∼11-mW output power and 2.3-mW threshold power. The frequency noise reaches the resonator-intrinsic thermo-refractive noise from 2-kHz to 1-MHz offset. The laser phase noise reaches -155 dBc/Hz at 10-MHz offset. The performance of this chip-scale SBL shows promise not only to improve the reliability and reduce size and cost but also to enable new precision experiments that require the high-speed manipulation, control, and interrogation of atoms and qubits. Realization in the silicon nitride ultra-low loss platform is adaptable to a wide range of wavelengths from the visible to infrared and enables integration with other components for systems-on-chip solutions for a wide range of precision scientific and engineering applications including quantum sensing, gravitometers, atom interferometers, precision metrology, optical atomic clocks, and ultra-low noise microwave generation.

12.
Nano Lett ; 23(24): 11755-11762, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38091579

RESUMEN

The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 µm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.


Asunto(s)
Fibroínas , Frutas/microbiología , Antioxidantes/farmacología , Antibacterianos/farmacología
13.
Nano Lett ; 23(24): 11669-11677, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38060996

RESUMEN

Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.

14.
Pulm Circ ; 13(3): e12272, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37547487

RESUMEN

Echocardiography, a simple and noninvasive tool, is the first choice for screening pulmonary hypertension (PH). However, accurate assessment of PH, incorporating both the pulmonary artery pressures and additional signs for PH remained unsatisfied. Thus, this study aimed to develop a machine learning (ML) model that can automatically evaluate the probability of PH. This cohort included data from 346 (275 for training set and internal validation set and 71 for external validation set) patients with suspected PH patients and receiving right heart catheterization. Echocardiographic images on parasternal short axis-papillary muscle level (PSAX-PML) view from all patients were collected, labeled, and preprocessed. Local features from each image were extracted and subsequently integrated to build a ML model. By adjusting the parameters of the model, the model with the best prediction effect is finally constructed. We used receiver-operating characteristic analysis to evaluate model performance and compared the ML model with the traditional methods. The accuracy of the ML model for diagnosis of PH was significantly higher than the traditional method (0.945 vs. 0.892, p = 0.027 [area under the curve [AUC]]). Similar findings were observed in subgroup analysis and validated in the external validation set (AUC = 0.950 [95% CI: 0.897-1.000]). In summary, ML methods could automatically extract features from traditional PSAX-PML view and automatically assess the probability of PH, which were found to outperform traditional echocardiographic assessments.

16.
Aquat Toxicol ; 261: 106622, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37392728

RESUMEN

Manganese (Mn) is an essential metal for organisms, but high levels can induce serious toxicity. To date, the toxic mechanism of Mn to marine fish is still poorly understood. In the present study, Oryzias melastigma embryos were exposed to different concentrations of MnCl2 (0-152.00 mg/L) to investigate its effect on early development. The results showed that exposure to MnCl2 caused developmental toxicity to embryos, including increased heart rate, delayed hatching time, decreased hatching rate and increased malformation rate. MnCl2 exposure could induce oxidative stress in O. melastigma embryos, as indicated by increased the contents of malondialdehyde (MDA) and the activities of the antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)). The heart might be an important target organ for MnCl2 because of cardiac malformations and disruption in the expression of cardiac development-related genes (ATPase, epo, fg8g, cox1, cox2, bmp4 and gata4). In addition, the expression levels of stress- (omTERT and p53) and inflammation-related genes (TNFα and il1ß) were significantly up-regulated, suggesting that MnCl2 can trigger stress and inflammatory response in O. melastigma embryos. In conclusion, this study demonstrated that MnCl2 exposure can induce developmental toxicity, oxidative stress and inflammatory response in O. melastigma embryos, providing insights into the toxic mechanism of Mn to the early development of marine fish.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , Manganeso/toxicidad , Cloruros , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo
17.
Mar Environ Res ; 189: 106060, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37336093

RESUMEN

Zooplankton community is ecological important because of its high sensitivity to environmental changes especially in estuarine areas. The Yellow River estuary (YRE) in China is the fifth biggest estuary in the world with significant seasonal characteristics and anthropogenic influence of Water-Sediment Regulation (WSR). This study investigated the spatio-temporal patterns of zooplankton in the YRE to explore the response of zooplankton to seasonal variation and WSR. Results suggested that the temporal patterns of zooplankton were mainly characterized by seasonal shift of dominant species. Hierarchical cluster analysis and non-metric multidimensional scaling determined summer, summer-autumn and winter-spring three zooplankton assemblages. Zooplankton spatial distributions represented seasonal consistency, in which the abundance generally showed a decreasing gradient from the river mouth to sea. WSR caused a high species replacement rate in July-August (80.36%) and a dramatic abundance decline from 4224.60 ind./m3 to 1541.10 ind./m3 with persistency and hysteresis effect. The high zooplankton abundance moved seaward in spatial distribution after WSR. Summer spatial pattern was determined with two and three zooplankton station assemblages, which was more clear after WSR. Redundancy analysis identified SSS, SST and transparency as important factors structuring zooplankton spatio-temporal patterns, in which SSS was the key one. The results provide a necessary reference for understanding the response of zooplankton community in estuarine areas to spontaneous changes and anthropogenic factors, and can help the protection of estuarine ecosystems and the formulation of hydrological regulatory policies.


Asunto(s)
Estuarios , Zooplancton , Animales , Zooplancton/fisiología , Ecosistema , Ríos , Agua , Estaciones del Año , China
18.
Small ; 19(31): e2302504, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37282771

RESUMEN

Phosphorescent materials as block elements to build artwork incorporating the time and emission, enable them with spectacular lighting effects. In this work, enhanced phosphorescence of carbon nanodots (CNDs) is demonstrated via double confinement strategy, which silica and epoxy resin are used as the first and the second order confinement layer. The multi-confined CNDs show an enhanced phosphorescence quantum yield up to 16.4%, with enduring emission lifetime up to 1.44 s. Delicately, the plasticity of the epoxy resin enables them easily to be designed for 3D artworks with long emission lifetimes in different shapes. The efficient and eco-friendly phosphorescent CNDs may arouse intense interest both in the academic community and markets.

19.
Nat Commun ; 14(1): 3738, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349332

RESUMEN

Constructing 2D/3D perovskite heterojunctions is effective for the surface passivation of perovskite solar cells (PSCs). However, previous reports that studying perovskite post-treatment only physically deposits 2D perovskite on the 3D perovskite, and the bulk 3D perovskite remains defective. Herein, we propose Cl2-dissolved chloroform as a multifunctional solvent for concurrently constructing 2D/3D perovskite heterojunction and inducing the secondary growth of the bulk grains. The mechanism of how Cl2 affects the performance of PSCs is clarified. Specifically, the dissolved Cl2 reacts with the 3D perovskite, leading to Cl/I ionic exchange and Ostwald ripening of the bulk grains. The generated Cl- further diffuses to passivate the bulk crystal and buried interface of PSCs. Hexylammonium bromide dissolved in the solvent reacts with the residual PbI2 to form 2D/3D heterojunctions on the surface. As a result, we achieved high-performance PSCs with a champion efficiency of 24.21% and substantially improved thermal, ambient, and operational stability.


Asunto(s)
Compuestos de Calcio , Óxidos , Oxidación-Reducción , Solventes
20.
Adv Mater ; 35(39): e2301624, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37358373

RESUMEN

Perovskite solar cells (PSCs) have demonstrated over 25% power conversion efficiency (PCE) via efficient surface passivation. Unfortunately, state-of-the-art perovskite post-treatment strategies can solely heal the top interface defects. Herein, an ion-diffusion management strategy is proposed to concurrently modulate the top interfaces, buried interfaces, and bulk interfaces (i.e., grain boundaries) of perovskite film, enabling all-interface defect passivation. Specifically, this method is enabled by applying double interactive salts of octylammonium iodide (OAI) and guanidinium chloride (GACl) onto the 3D perovskite surface. It is revealed that the hydrogen-bonding interaction between OA+ and GA+ decelerates the OA+ diffusion and therefore forms a dimensionally broadened 2D capping layer. Additionally, the diffusion of GA+ and Cl- determines the composition of the bulk and buried interface of PSCs. As a result, n-inter-i-inter-p, i.e., five-layer structured PSCs can be obtained with a champion PCE of 25.43% (certified 24.4%). This approach also enables the substantially improved operational stability of perovskite solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...